
Automated Temporal Equilibrium Analysis:
Veri�cation and Synthesis of Multi-Player Games

Julian Gutierreza, Muhammad Najibb, Giuseppe Perellic, Michael Wooldridged

aFaculty of Information Technology, Monash University
bDepartment of Computer Science, University of Kaiserslautern

cDepartment of Computer, Automatic, and Management Engineering, Sapienza University of Rome
dDepartment of Computer Science, University of Oxford

Abstract

In the context of multi-agent systems, the rational veri�cation problem is concerned

with checking which temporal logic properties will hold in a system when its con-

stituent agents are assumed to behave rationally and strategically in pursuit of indi-

vidual objectives. Typically, those objectives are expressed as temporal logic formulae

which the relevant agent desires to see satis�ed. Unfortunately, rational veri�cation

is computationally complex, and requires specialised techniques in order to obtain

practically useable implementations. In this paper, we present such a technique. �is

technique relies on a reduction of the rational veri�cation problem to the solution of

a collection of parity games. Our approach has been implemented in the Equilibrium

Veri�cation Environment (EVE) system. �e EVE system takes as input a model of a

concurrent/multi-agent system represented using the Simple Reactive Modules Lan-

guage (SRML), where agent goals are represented as Linear Temporal Logic (LTL)

formulae, together with a claim about the equilibrium behaviour of the system, also

expressed as an LTL formula. EVE can then check whether the LTL claim holds on

some (or every) computation of the system that could arise through agents choosing

Nash equilibrium strategies; it can also check whether a system has a Nash equilib-

rium, and synthesise individual strategies for players in the multi-player game. A�er

∗Corresponding author: Julian Gutierrez.
Email addresses: julian.gutierrez@monash.edu (Julian Gutierrez),

najib@cs.uni-kl.de (Muhammad Najib), perelli@diag.uniroma1.it (Giuseppe
Perelli), michael.wooldridge@cs.ox.ac.uk (Michael Wooldridge)

Preprint submi�ed to Elsevier August 14, 2020

ar
X

iv
:2

00
8.

05
63

8v
1

 [
cs

.L
O

]
 1

3
A

ug
 2

02
0

presenting our basic framework, we describe our new technique and prove its cor-

rectness. We then describe our implementation in the EVE system, and present ex-

perimental results which show that EVE performs favourably in comparison to other

existing tools that support rational veri�cation.

Keywords: Multi-agent systems, Temporal logic, Nash equilibrium, Bisimulation

invariance, Rational veri�cation, Model checking, Synthesis.

1. Introduction

�e deployment of AI technologies in a wide range of application areas over the

past decade has brought the problem of verifying such systems into sharp focus. Ver-

i�cation is the problem of ensuring that a particular system is correct with respect to

some speci�cation. �e most successful approach to automated formal veri�cation is

that of model checking [24]. With this approach, we �rst derive a �nite state abstract

model of the system S being studied; a common approach involves representing the

system as a directed graph in which vertices correspond to states of the system, and

edges correspond to the execution of program instructions, or the performance of ac-

tions; branching in the graph represents either input from the environment, or choices

available to components of the system. With this approach, the directed graph is typi-

cally referred to as a labelled transition system, or Kripke structure: each path through

the transition system represents a possible execution or computation of the system S .

Correctness properties of interest are expressed as formulae ϕ of propositional tem-

poral logic—the most popular such logics for this purpose are Linear Temporal Logic

(LTL) and the Computation Tree Logic (CTL). In the case of properties ϕ expressed as

LTL formulae, we typically want to check whether ϕ is satis�ed on some or all pos-

sible computations of S , that is, on some or all possible paths through the transition

system/Kripke structure representing S .

Great advances have been made in model checking since the approach was �rst

proposed in the early 1980s, and the technique is now widely used in industry. Never-

theless, the veri�cation of practical so�ware systems is by no means a solved problem,

and remains the subject of intense ongoing research. �e veri�cation of AI systems,

2

however, raises a distinctive new set of challenges. �e present paper is concerned

with the problem of verifying multi-agent systems, which are AI systems consisting of

multiple interacting semi-autonomous so�ware components known as agents [76, 69].

So�ware agents were originally proposed in the late 1980s, but it is only over the past

decade that the so�ware agent paradigm has been widely adopted. At the time of

writing, so�ware agents are ubiquitous: we have so�ware agents in our phone (e.g.,

Siri), processing requests online, automatically trading in global markets, controlling

complex navigation systems (e.g., those in self-driving cars), and even carrying out

tasks on our behalf in our homes (e.g., Alexa). Typically, these agents do not work in

isolation: they may interact with humans or with other so�ware agents. �e �eld of

multi-agent systems is concerned with understanding and engineering systems that

have these characteristics.

We typically assume that agents are acting in pursuit of goals or preferences that

are delegated to them by their users. However, whether an agent is able to achieve

its goal, or the extent to which it can bring about its preferences, will be directly

in�uenced by the behaviour of other agents. �us, to act optimally, an agent must

reason strategically, taking into account the goals/preferences of other agents, and the

fact that they too will be acting strategically in the pursuit of these, taking into account

the goals/preferences of other agents and their own strategic behaviour. Game theory

is the mathematical theory of strategic interaction, and as such, it provides a natural

set of tools for reasoning about multi-agent systems [65].

With respect to the problem of verifying multi-agent systems, the relevance of

game theory is as follows. Suppose we are interested in whether a multi-agent sys-

tem S , populated by self-interested agents, might exhibit some property represented

by an LTL formula ϕ. We can, of course, directly apply standard model checking tech-

niques, to determine whether ϕ holds on some or all computations of S . However,

given that our agents are assumed to act rationally, whether ϕ holds on some or all

computations is not relevant if the computations in question involve irrational choices

on behalf of some agents in the system. A much more relevant question, therefore, is

whetherϕ holds on some or all computations that could result from agents in the system

making rational choices. �is raises the question of what counts as a rational choice by

3

the agents in the system, and for this game theory provides a number of answers, in

the form of solution concepts such as Nash equilibrium [65, 69]. �us, from the point

of view of game theory, correct behaviour would correspond to rational behaviour ac-

cording to some game theoretic solution concept, which is another way of saying that

agents in the system will act optimally with respect to their preferences/goals, under

the assumption that other agents do the same.

�is approach to reasoning about the behaviour of multi-agent AI systems es-

tablishes a natural connection between multi-agent systems and multi-player games:

agents correspond to players, computations of the multi-agent system correspond to

plays of the game, individual agent behaviours correspond to player strategies (which

de�ne how players make choices in the system over time), and correct behaviour

would correspond to rational behaviour—in our case, player behaviour that is con-

sistent with the set of Nash equilibria of the multi-player game, whenever such a

set is non-empty. Our main interest in this paper is the development of the theory,

algorithms, and tools for the automated game theoretic analysis of concurrent and

multi-agent systems, and in particular, the analysis of temporal logic properties that

will hold in a multi-agent system under the assumption that players choose strategies

which form a Nash equilibrium1.

�e connection between AI systems (modelled as multi-agent systems) and multi-

player games is well-established, but one may still wonder why correct behaviour for

the AI system should correspond to rational behaviour in the multi-player game. �is

is a legitimate question, especially, because game theory o�ers very many di�erent

notions of rationality, and therefore of optimal behaviour in the system/game. For

instance, solution concepts such as subgame-perfect Nash equilibrium (SPNE) and

strong Nash equilibrium (SNE) are re�nements of Nash equilibrium where the no-

tion of rationality needs to satisfy stronger requirements. Consequently, there may

be executions of a multi-agent system that would correspond to a Nash equilibrium of

the associated multi-player game (thus, regarded as correct behaviours of the multi-

1Although in this work we focus on Nash equilibrium, a similar methodology may be applied using

re�nements of Nash equilibrium and other solution concepts.

4

agent system), but which do not correspond to a subgame-perfect Nash equilibrium

or to a strong Nash equilibrium of the associated multi-player game. We do not argue

that Nash equilibrium is the only solution concept of relevance in the game theoretic

analysis of multi-agent systems, but we believe (as do many others [69, 48, 3]) that

Nash equilibrium is a natural and appropriate starting point for such an analysis. Tak-

ing Nash equilibrium as our baseline notion of rationality in multi-player games, and

therefore of correctness in multi-agent systems, we focus our study on two problems

related to the temporal equilibrium analysis of multi-agent systems [42, 77], as we

now explain.

Synthesis and Rational Veri�cation. �e two main problems of interest to us are the

rational veri�cation and automated synthesis problems for concurrent and multi-agent

systems modelled as multi-player games. In the rational veri�cation problem, we de-

sire to check which temporal logic properties are satis�ed by the system/game in

equilibrium, that is, temporal logic properties satis�ed by executions of the multi-

agent system generated by strategies that form a Nash equilibrium. A li�le more for-

mally, let P1, . . . , Pn be the agents in our concurrent and multi-agent system, and let

NE(P1, . . . , Pn) denote the set of all executions, herea�er called runs, of the system

that could be generated by agents selecting strategies that form a Nash equilibrium.

Finally, let ϕ be an LTL formula. �en, in the rational veri�cation problem, we want

to know whether for some/every run π ∈ NE(P1, . . . , Pn) we have π |= ϕ.

In the automated synthesis problem, on the other hand, we additionally desire to

construct a pro�le of strategies for players so that the resulting pro�le is an equilib-

rium of the multi-player game, and induces a run that satis�es a given property of

interest, again expressed as a temporal logic formula. �at is, we are given the system

P1, . . . , Pn, and a temporal logic property ϕ, and we are asked to compute Nash equi-

librium strategies ~σ = (σ1, . . . , σn), one for each player in the game, that would result

in ϕ being satis�ed in the run π(~σ) that would be generated when these strategies are

enacted.

5

Our Approach. In this paper, we present a new approach to the rational veri�ca-

tion and automated synthesis problems for concurrent and multi-agent systems. In

particular, we develop a novel technique that can be used for both rational veri�-

cation and automated synthesis using a reduction to the solution of a collection of

parity games. �e technique can be e�ciently implemented making use of power-

ful techniques for parity games and temporal logic synthesis and veri�cation, and has

been deployed in the Equilibrium Veri�cation Environment (EVE [1]), which supports

high-level descriptions of systems/games using the Simple Reactive Modules Language

(SRML [74, 42]) and temporal logic speci�cations given by Linear Temporal Logic for-

mulae [68].

�e central decision problem that we consider is that of Non-Emptiness, the prob-

lem of checking if the set of Nash equilibria in a multi-player game is empty; as we will

later show, rational veri�cation and synthesis can be reduced to this problem. If we

consider concurrent and multi-player games in which players have goals expressed

as temporal logic formulae, this problem is known to be 2EXPTIME-complete for a

wide range of system representations and temporal logic languages. For instance, for

games with perfect information played on labelled graphs, the problem is 2EXPTIME-

complete when goals are given as LTL formulae [64], and 2EXPTIME-hard when goals

are given in CTL [43]. �e problem is 2EXPTIME-complete even if succinct represen-

tations [32, 41] or only two-player games [23] are considered, and becomes undecid-

able if imperfect information and more than two players are allowed [47], showing

the very high complexity of solving this problem, from both practical and theoretical

viewpoints.

A common feature of the results above mentioned is that—modulo minor variations—

their solutions are, in the end, reduced to the construction of an alternating parity

automaton over in�nite trees (APT [59]) which are then checked for non-emptiness.

Here, we present a novel, simpler, and more direct technique for checking the ex-

istence of Nash equilibria in games where players have goals expressed in LTL. In

particular, our technique does not rely on the solution of an APT. Instead, we reduce

the problem to the solution of (a collection of) parity games [29], which are widely

used for synthesis and veri�cation problems.

6

Formally, a parity game is a two-player zero-sum turn-based game given by a

labelled �nite graph H = (V0, V1, E, α) such that V = V0 ∪ V1 is a set of states

partitioned into Player 0 (V0) and Player 1 (V1) states, respectively, E ⊆ V × V is

a set of edges/transitions, and α : V → N is a labelling priority function. Player 0

wins if the smallest priority that occurs in�nitely o�en in the in�nite play is even.

Otherwise, player 1 wins. It is known that solving a parity game (checking which

player has a winning strategy) is in NP ∩ coNP [51], and can be solved in quasi-

polynomial time [18] 2.

Our technique uses parity games in the following way. We take as input a gameG

(representing a concurrent and multi-agent system) and build a parity gameH whose

sets of states and transitions are doubly exponential in the size of the input but with

priority function only exponential in the size of the input game. Using a determin-

istic Stree� automaton on in�nite words (DSW [52]), we then solve the parity game,

leading to a decision procedure that is, overall, in 2EXPTIME, and, therefore, given

the hardness results we mentioned above, essentially optimal.

Context. Games have several dimensions: for example, they may be cooperative or

non-cooperative; have perfect or imperfect information; have perfect or imperfect

recall; be stochastic or not; amongst many other features. Each of these aspects will

have a modelling and computational impact on the work to be developed, and so it is

important to be precise about the nature of the games we are studying, and therefore

the assumptions underpinning our approach.

Our framework considers non-cooperative multi-player general-sum games with

perfect information, with Nash equilibrium as the main game-theoretic solution con-

cept. �e games are played on �nite structures (state-transition structures induced

by high-level SRML descriptions), with players having goals (preferences over plays)

given by LTL formulae and deterministic strategies represented by �nite-state ma-

chines with output (Moore machines, sometimes referred to as transducers). Because

2Despite more than 30 years of research, and promising practical performance for algorithms to solve

them, it remains unknown whether parity games can be solved in polynomial time.

7

of the features of our framework – chie�y, the fact that players have LTL goals and

games are played on �nite structures – considering deterministic strategies modelled

as �nite-state machines does not represent a restriction: in our framework, anything

that a player can achieve with a perfect-recall strategy can also be achieved with a

�nite-state machine strategy (see, e.g., [41] for the formal results).

Finally, we note that our games have equilibria that are bisimulation invariant: that

is, bisimilar structures have the same set of Nash equilibria. �is is a highly desirable

property, and to the best of our knowledge, in this respect our work is unique in the

computer science and multi-agent systems literatures.

�e EVE System. �e technique outlined above and described in detail in this pa-

per has been successfully implemented in the Equilibrium Veri�cation Environment

(EVE) system [45]. EVE takes as input a model of a concurrent and multi-agent

system, in which agents are speci�ed using the Simple Reactive Modules Language

(SRML) [74, 42], and preferences for agents are de�ned by associating with each agent

a goal, represented as a formula of LTL [68]. Note that we believe our choice of the

Reactive Modules language is a very natural one [6]: �e language is both widely used

in practical model checking systems, such as MOCHA [9] and PRISM [56], and close

to real-world (declarative) programming models and speci�cation languages.

Now, given a speci�cation of a multi-agent system and player preferences, the

EVE system can: (i) check for the existence of a Nash equilibrium in a multi-player

game; (ii) check whether a given LTL formula is satis�ed on some or every Nash

equilibrium of the system; and (iii) synthesise individual player strategies in the game.

As we will show in the paper, EVE performs favourably compared with other existing

tools that support rational veri�cation. Moreover, EVE is the �rst and only tool for

automated temporal equilibrium analysis for a model of multi-player games where

Nash equilibria are preserved under bisimilarity3.

Note that our approach may be used to model a wide range of multi-agent systems.

3Other tools to compute Nash equilibria exist, but they do not use our model of strategies. A comparison

with those other techniques for equilibrium analysis are discussed later.

8

For example, as shown in [42], it is easy to capture multi-agent STRIPS systems [15].

Structure of the paper. �e remainder of this article is structured as follows.

• Section 2 presents the relevant background on games, logic, and automata.

• In Section 3, we formalise the main problem of interest and give a high-level

description of the core decision procedure for temporal equilibrium analysis

developed in this paper.

• In Sections 4, 5, and 6, we describe in detail our main decision procedure for

temporal equilibrium analysis, prove its correctness, and show that it is essen-

tially optimal with respect to computational complexity.

• In Section 7, we show how to use our main decision procedure to do rational

veri�cation and automated synthesis of logic-based multi-player games.

• In Section 8, we describe the EVE system, and give detailed experimental results

which demonstrate that EVE performs favourably in comparison with other

tools that support rational veri�cation.

• In Section 9, we conclude, discuss relevant related work, and propose some

avenues for future work.

�e source code for EVE is available online4, and the system can also be accessed via

the web5.

2. Preliminaries

Games. A concurrent (multi-player) game structure (CGS) is a tuple

M = (N, (Aci)i∈N,St, s0, tr)

where N = {1, . . . , n} is a set of players, each Aci is a set of actions, St is a set

of states, with a designated initial state s0. With each player i ∈ N and each state

4See https://github.com/eve-mas/eve-parity
5See http://eve.cs.ox.ac.uk/

9

https://github.com/eve-mas/eve-parity
http://eve.cs.ox.ac.uk/

s ∈ St, we associate a non-empty set Aci(s) of available actions that, intuitively, i

can perform when in state s. We refer to a pro�le of actions~a = (a1, . . . , an) ∈ ~Ac =

Ac1 × · · · ×Acn as a direction. A direction ~a is available in state s if for all i we have

ai ∈ Aci(s). Write ~Ac(s) for the set of available directions in state s. For a given set

of players A ⊆ N and an action pro�le ~a, we let ~aA and ~a−A be two tuples of actions,

respectively, one for each player in A and one for each player in N \A. We also write

~ai for ~a{i} and ~a−i for ~aN\{i}. Furthermore, for two directions ~a and ~a′, we write

(~aA,~a
′
−A) to denote the direction where the actions for players in A are taken from

~a and the actions for players in N \ A are taken from ~a′. Finally, tr is a deterministic

transition function, which associate each state s and every available direction ~a in s a

state s′ ∈ St.

Whenever there is ~a such that tr(s,~a) = s′, we say that s′ is accessible from s. A

path π = s0, s1, . . . ∈ Stω is an in�nite sequence of states such that, for every k ∈ N,

sk+1 is accessible from sk . By πk we refer to the (k + 1)-th state in π and by π≤k to

the (�nite) pre�x of π up to the (k+ 1)-th element. An action pro�le run is an in�nite

sequence η = ~a0,~a1, . . . of action pro�les. Note that, sinceM is deterministic (i.e.,

the transition function tr is deterministic), for a given state s0, an action pro�le run

uniquely determines the path π in which, for every k ∈ N, πk+1 = tr(πk,~ak).

A CGS is a type of concurrent system. As such, behaviourally equivalent CGSs

should give rise to strategically equivalent games. However, that is not always the

case. A comprehensive study of this issue can be found in [38, 39] where the strate-

gic power of games is compared using one of the most important behavioural (also

called observational) equivalences in concurrency, namely bisimilarity, which is usu-

ally de�ned over Kripke structures or labelled transition systems (see, e.g., [63, 49]).

However, the equivalence can be uniformly de�ned for general CGSs, where direc-

tions play the role of, for instance, actions in transition systems. Formally, let M =

(N, (Aci)i∈N,St, s0, tr) and M ′ = (N, (Aci)i∈N,St′, s′0, tr
′) be two CGSs, and λ :

St → AP and λ′ : St′ → AP be two labelling functions over a set of propositional

variables AP. A bisimulation, denoted by ∼, between states s∗ ∈ St and t∗ ∈ St′ is

a non-empty binary relation R ⊆ St × St′, such that s∗ R t∗ and for all s, s′ ∈ St,

t, t′ ∈ St′, and ~a ∈ ~Ac:

10

• s R t implies λ(s) = λ′(t),

• s R t and tr(s,~a) = s′ implies tr(t,~a) = t′′ for some t′′ ∈ St′ with s′ R t′′,

• s R t and tr(t,~a) = t′ implies tr(s,~a) = s′′ for some s′′ ∈ St with s′′ R t′.

�en, if there is a bisimulation between two states s∗ and t∗, we say that they are

bisimilar and write s∗ ∼ t∗ in such a case. We also say that CGSs M and M ′ are

bisimilar (in symbols M ∼ M ′) if s0 ∼ s′0. Bisimilar structures satisfy the same set

of temporal logic properties, a desirable property that will be relevant later.

A CGS de�nes the dynamic structure of a game, but lacks a central aspect of games

in the sense of game theory: preferences, which give games their strategic structure.

A multi-player game is obtained from a structureM by associating each player with a

goal. In this paper, we consider multi-player games with parity and Linear Temporal

Logic (LTL) goals.

LTL [68] extends classical propositional logic with two operators, X (“next”) and

U (“until”), that can be used to express properties of paths. �e syntax of LTL is

de�ned with respect to a set AP of propositional variables as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. �e remaining classical logical connectives are de�ned in terms of

¬ and ∨ in the usual way. Two key derived LTL operators are F (“eventually”) and

G (“always”), which are de�ned in terms of U as follows: Fϕ = >Uϕ and Gϕ =

¬F¬ϕ.

We interpret formulae of LTL with respect to tuples (π, t, λ), where π is a path

over some multi-player game, t ∈ N is a temporal index into π, and λ : St → 2AP

is a labelling function, that indicates which propositional variables are true in every

11

state. Formally, the semantics of LTL is given by the following rules:

(π, t, λ) |= >
(π, t, λ) |= p i� p ∈ λ(πt)

(π, t, λ) |= ¬ϕ i� it is not the case that (π, t, λ) |= ϕ

(π, t, λ) |= ϕ ∨ ψ i� (π, t, λ) |= ϕ or (π, t, λ) |= ψ

(π, t, λ) |= Xϕ i� (π, t+ 1, λ) |= ϕ

(π, t, λ) |= ϕUψ i� for some t′ ≥ t :
(
(π, t′, λ) |= ψ and

for all t ≤ t′′ < t′ : (π, t′′, λ) |= ϕ
)
.

If (π, 0, λ) |= ϕ, we write π |= ϕ and say that π satis�es ϕ.

De�nition 1. A (concurrent multi-player) LTL game is a tuple

GLTL = (M, λ, (γi)i∈N)

where λ : St → 2AP is a labelling function on the set of states St ofM, and each γi
is the goal of player i, given as an LTL formula over AP.

To de�ne multi-player games with parity goals we consider priority functions.

Let α : St → N be a priority function. A path π satis�es α : St → N, and write

π |= α in that case, if the minimum number occurring in�nitely o�en in the in�nite

sequence α(π0), α(π1), α(π2), . . . is even.

Observe that parity conditions are pre�x-independent, that is, for every path π and

a �nite sequence h ∈ St∗, it holds that h · π |= α if and only if π |= α.

De�nition 2. A (concurrent multi-player) Parity game is a tuple

GPAR = (M, (αi)i∈N)

where αi : St→ N is the goal of player i, given as a priority function over St.

Herea�er, for statements regarding either LTL or Parity games6, we will simply

denote the underlying structure as G. Games are played by each player i selecting

6To simplify notations, note that , herea�er, by “Parity game” we denote the concurrent and multi-player

extension de�ned here of the well-known two-player turn-based parity games in the literature.

12

a strategy σi that will de�ne how to make choices over time. Formally, for a given

game G, a strategy σi = (Si, s
0
i , δi, τi) for player i is a �nite state machine with

output (a transducer), where Si is a �nite and non-empty set of internal states, s0i is

the initial state, δi : Si × ~Ac → Si is a deterministic internal transition function,

and τi : Si → Aci an action function. Note that strategies are required to output

actions that are available to the agent in the current state. To enforce this, we assume

that the current state s ∈ St in the arena is encoded in the internal state si in Si

of agent i and that the action τi(si) taken by the action function belongs to Aci(s).

Let Σi be the set of strategies for player i. A strategy is memoryless in G from s if

Si = St, s0i = s, and δi = tr. Once every player i has selected a strategy σi, a strategy

pro�le ~σ = (σ1, . . . , σn) results and the game has an outcome, a path inM, which

we will denote by π(~σ). Because strategies are deterministic, π(~σ) is the unique path

induced by ~σ, that is, the in�nite sequence s0, s1, s2, . . . such that

• sk+1 = tr(sk, (τ1(sk1), · · · , τn(skn))), and

• sk+1
i = δi(s

k
i , (τ1(sk1), · · · , τn(skn))), for all k ≥ 0.

Note that the path induced by the strategy pro�le ~σ(σ1, . . . , σn) from state s0
corresponds to the one generated by the �nite transducer T~σ obtained from the com-

position of the strategies σi’s in ~σ, with input set St and output set ~Ac, where the

initial input is s0. Since such transducer is �nite, the generated path π is ultimately

periodic, that is, there exists p, r ∈ N such that πk = πk+r for every p ≤ k. �is means

that, a�er the pre�x π≤p, the path loops inde�nitely over the sequence πp+1 . . . πp+r .

Nash equilibrium. Since the outcome of a game determines if a player goal is sat-

is�ed, we can de�ne a preference relation �i over outcomes for each player i. Let wi
be γi if G is an LTL game, and be αi if G is a Parity game. �en, for two strategy

pro�les ~σ and ~σ′ in G, we have

π(~σ) �i π(~σ′) if and only if π(~σ′) |= wi implies π(~σ) |= wi.

On this basis, we can de�ne the concept of Nash equilibrium [65] for a multi-player

game with LTL or parity goals: given a game G, a strategy pro�le ~σ is a Nash equilib-

13

rium of G if, for every player i and strategy σ′i ∈ Σi, we have

π(~σ) �i π((~σ−i, σ
′
i))

where (~σ−i, σ′i) denotes (σ1, . . . , σi−1, σ′i, σi+1, . . . , σn), the strategy pro�le where

the strategy of player i in ~σ is replaced by σ′i. Let NE(G) denote the set of Nash

equilibria of G. In [38, 39] we showed that, using the model of strategies de�ned

above, the existence of Nash equilibria is preserved across bisimilar systems. �is is

in contrast to other models of strategies considered in the concurrent games literature,

which do not preserve Nash equilibria. Because of this, herea�er, we say that {Σi}i∈N
is a set of bisimulation-invariant strategies and that NE(G) is the set of bisimulation-

invariant Nash equilibrium pro�les of G.

Automata. A deterministic automaton on in�nite words is a tuple

A = (AP, Q, q0, ρ,F)

where Q is a �nite set of states, ρ : Q × AP → Q is a transition function, q0 is

an initial state, and F is an acceptance condition. We mainly use parity and Stree�

acceptance conditions. A parity condition F is a partition {F1, . . . , Fn} of Q, where

n is the index of the parity condition and any [1, n] 3 k is a priority. We use a priority

function α : Q → N that maps states to priorities such that α(q) = k if and only

if q ∈ Fk . For a run π = q0, q1, q2 . . . , let inf (π) denote the set of states occurring

in�nitely o�en in the run:

inf (π) = {q ∈ Q | q = qi for in�nitely many i’s}

A run π is accepted by a deterministic parity word (DPW) automaton with condition

F if the minimum priority that occurs in�nitely o�en is even, i.e., if the following

condition is satis�ed:
(

min
k∈[1,n]

(inf (π) ∩ Fk 6= ∅)

)
mod 2 = 0.

A Stree� condition F is a set of pairs {(E1, C1), . . . , (En, Cn)} where Ek ⊆ Q and

Ck ⊆ Q for all k ∈ [1, n]. A run π is accepted by a deterministic Stree� word (DSW)

automaton S with condition F if π either visits Ek �nitely many times or visits Ck
in�nitely o�en, i.e., if for every k either inf (π) ∩ Ek = ∅ or inf (π) ∩ Ck 6= ∅.

14

xy
0 1 2 3

0

1

2

3

Figure 1: Example of a 4× 4 grid world.

Example. In order to illustrate the usage of our framework, consider the following

example. Suppose we have two robots/agents inhabiting a grid world (an abstraction

of some environment, e.g., a warehouse) with dimensions n× n. Initially, the agents

are located at some corners of the grid; �e agents are each able to move around the

grid in directions north, south, east, and west. �e goal of each agent is to reach the

opposite corner. For instance, if agent i’s initial position is (0, 0), then the goal is to

reach position (n−1, n−1). A number of obstacles may also appear on the grid. �e

agents are not allowed to move into a coordinate occupied by an obstacle or outside

the grid world. To make it clearer, consider the con�guration shown in Figure 1; a

(grey) �lled square depicts an obstacle. Agent 1, depicted by �, can only move west

to (2, 3), whereas agent 2, depicted by©, can only move east to (1, 0).

In this example we make the following assumptions: (1) at each timestep, each

agent has to make a move, that is, it cannot stay at the same position for two consec-

utive timesteps, and it can only move at most one step; (2) the goal of each agent is, as

stated previously, to eventually reach the opposite corner of her initial position. From

system design point of view, the question that may be asked is: can we synthesise a

strategy pro�le such that it induces a stable (Nash equilibrium) run and at the same

time ensures that the agents never crash into each other?

Checking the existence of such strategy pro�le is not trivial. For instance, the

con�guration in Figure 1 does not admit any safe Nash equilibrium runs, that is, where

all agents get their goals achieved without crashing into each other. Player © can

15

xy
0 1 2 3

0

1

2

3

Figure 2: A 4× 4 grid world with safe Nash equilibrium.

reach (3, 3) without crashing into �, since � can safely “wait” by moving back and

forth between (0, 3) and (1, 3) until © reaches (3, 3). However, there is no similar

safe “waiting zone” for© to get out of �’s way. On the other hand, the con�guration

in Figure 2, admits safe Nash equilibrium; © and � have safe waiting zones (0, 0)

and (1, 0), and (0, 3) and (1, 3), respectively. Clearly, such a reasoning is not always

straightforward, especially when the se�ing is more complex, and therefore, having

a tool to verify and synthesise such scenario is desirable. Later in Section 8.5 we will

discuss how to encode and check such systems using our tool.

3. A Decision Procedure using Parity Games

We are now in a position to formally state the Non-Emptiness problem:

Given: An LTL Game GLTL.

�estion: Is it the case that NE(GLTL) 6= ∅?

As indicated before, we solve both veri�cation and synthesis through a reduction

to the above problem. �e technique we develop consists of three steps. First, we

build a Parity game GPAR from an input LTL game GLTL. �en—using a characteri-

sation of Nash equilibrium (presented later) that separates players in the game into

those that achieve their goals in a Nash equilibrium (the “winners”,W) and those that

do not achieve their goals (the “losers”, L)—for each set of players in the game, we

eliminate nodes and paths in GPAR which cannot be a part of a Nash equilibrium, thus

16

producing a modi�ed Parity game, G−LPAR. Finally, in the third step, we use Stree� au-

tomata on in�nite words to check if the obtained Parity game witnesses the existence

of a Nash equilibrium. �e overall algorithm is presented in Algorithm 1 which also

includes some comments pointing to the relevant Sections/�eorems. �e �rst step

is contained in line 3, while the third step is in lines 12–14. �e rest of the algorithm

is concerned with the second step. In the sections that follow, we will describe each

step of the algorithm and, in particular, what are and how to compute Punj(GPAR)

and G−LPAR, two key constructions used in our decision procedure.

Algorithm 1: Nash equilibrium via Parity games

1 Input: An LTL game GLTL = (N, (Aci)i∈N,St, s0, tr, λ, (γi)i∈N).

2 Output: “Yes” if NE(GLTL) 6= ∅; “No” otherwise.

3 GPAR ⇐= GLTL ; /* from Section 4 (Theorem 1) */

4 foreachW ⊆ N do

5 foreach j ∈ L = N \W do

6 Compute Punj(GPAR) ; /* from Section 5 (Theorem 2) */

7 end

8 Compute G−LPAR

9 foreach i ∈W do

10 Compute Ai and Si from G−LPAR

11 end

12 if L(×i∈W (Si)) 6= ∅ ; /* from Section 5 (Theorem 3) */

13 then

14 return “Yes”

15 end

16 end

17 return “No”

Complexity. �e procedure presented above runs in doubly exponential time, match-

ing the optimal upper bound of the problem. In the �rst step we obtain a doubly ex-

ponential blowup. �e underlying structure M of the obtained Parity game GPAR

17

is doubly exponential in the size of the goals of the input LTL game GLTL, but the

priority functions set (αi)i∈N is only (singly) exponential. �en, in the second step,

reasoning takes only polynomial time in the size of the underlying concurrent game

structure of GPAR, but exponential time in both the number of players and the size of

the priority functions set. Finally, the third step takes only polynomial time, leading

to an overall 2EXPTIME complexity.

4. From LTL to Parity

We now describe how to realise line 3 of Algorithm 1, and in doing so we prove a

strong correspondence between the set of Nash equilibria of the input LTL game GLTL
and the set of Nash equilibria of its associated Parity game GPAR. �is result al-

lows us to shi� reasoning on the set of Nash equilibria of GLTL into reasoning on

the set of Nash equilibria of GPAR. �e basic idea behind this step of the decision

procedure is to transform all LTL goals (γi)i∈N in GLTL into a collection of DPWs,

denoted by (Aγi)i∈N, that will be used to build the underlying CGS of GPAR. We

construct GPAR as follows.

In general, using the results in [70, 67], from any LTL formula ϕ over AP one can

build a DPW Aϕ = 〈2AP, Q, q0, ρ, α〉 such that, L(Aϕ) = {π ∈ (2AP)ω : π |= ϕ},
that is, the language accepted by Aϕ is exactly the set of words over 2AP that are

models of ϕ. �e size of Q is doubly exponential in |ϕ| and the size of the range

of α is singly exponential in |ϕ|. Using this construction we can de�ne, for each LTL

goal γi, a DPW Aγi .

De�nition 3. Let GLTL = (M, λ, (γi)i∈N) be an LTL game whose underlying CGS

is M = (N, (Aci)i∈N,St, s0, tr), and let Aγi = 〈2AP, Qi, q
0
i , ρi, αi〉 be the DPW

corresponding to player i’s goal γi in GLTL. �e Parity game GPAR associated to GLTL is

GPAR = (M′, (α′i)i∈N), whereM′ = (N, (Aci)i∈N,St′, s′0, tr
′
) and (α′i)i∈N are as

follows:

• St′ = St××i∈NQi and s′0 = (s0, q
0
1 , . . . , q

0
n);

• for each state (s, q1, . . . , qn) ∈ St′ and action pro�le ~a,

tr′((s, q1, . . . , qn),~a) = (tr(s,~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));

18

• α′i(s, q1, . . . qn) = αi(qi).

Intuitively, the game GPAR is the product of the LTL game GLTL and the collec-

tion of parity (word) automata Aγi that recognise the models of each player’s goal.

Informally, the game executes in parallel the original LTL game together with the au-

tomata built on top of the LTL goals. At every step of the game, the �rst component

of the product state follows the transition function of the original game GLTL, while

the “automata” components are updated according to the labelling of the current state

of GLTL. As a result, the execution in GPAR is made, component by component, by the

original execution, say π, in the LTL game GLTL, paired with the unique runs of the

DPWs Aγi generated when reading the word λ(π).

Observe that in the translation from GLTL to its associated GPAR the set of actions

for each player is unchanged. �is, in turn, means that the set of strategies in both

GLTL and GPAR is the same, since for every state s ∈ St and action pro�le ~a, it follows

that ~a is available in s if and only if it is available in (s, q1, . . . , qn) ∈ St′, for all

(q1, . . . , qn) ∈×i∈NQi. Using this correspondence between strategies in GLTL and

strategies in GPAR, we can prove the following Lemma, which states an invariance

result between GLTL and GPAR with respect to the satisfaction of players’ goals.

Lemma 1 (Goals satisfaction invariance). Let GLTL be an LTL game and GPAR its

associated Parity game. �en, for every strategy pro�le ~σ and player i, it is the case that

π(~σ) |= γi in GLTL if and only if π(~σ) |= αi in GPAR.

Proof. We prove the statement by double implication. To show the le� to right im-

plication, assume that π(~σ) |= γi in GLTL, for any player i ∈ N, and let π denote the

in�nite path generated by ~σ in GLTL; thus, we have that λ(π) |= γi. On the other

hand, let π′ denote the in�nite path generated in GPAR by the same strategy pro�le ~σ.

Observe that the �rst component of π′ is exactly π. Moreover, consider the (i+ 1)-th

component ρi of π′. By the de�nition of GPAR, it holds that ρi is the run executed

by the automaton Aγi when the word λ(π) is read. By the de�nition of the labelling

function of GPAR, it holds that the parity of π′ according to α′i corresponds to the one

recognised by Aγi in ρi. �us, since we know that λ(π) |= γi, it follows that ρi is

accepting in Aγi and therefore π′ |= αi, which implies that π(~σ) |= αi in GPAR. For

19

the other direction, observe that all implications used above are equivalences. Using

those equivalences one can reason backwards to prove the statement.

Using Lemma 1 we can then show that the set of Nash Equilibria for any LTL

game exactly corresponds to the set of Nash equilibria of its associated Parity game.

Formally, we have the following invariance result between games.

�eorem 1 (Nash equilibrium invariance). Let GLTL be an LTL game and GPAR its

associated Parity game. �en, NE(GLTL) = NE(GPAR).

Proof. �e proof proceeds by double inclusion. First, assume that a strategy pro-

�le ~σ ∈ NE(GLTL) is a Nash Equilibrium in GLTL and, by contradiction, it is not a Nash

Equilibrium in GPAR. Observe that, due to Lemma 1, we known that the set of players

that get their goals satis�ed by π(~σ) in GLTL (the “winners”,W) is the same set of play-

ers that get their goals satis�ed by π(~σ) in GPAR. �en, there is player j ∈ L = N\W
and a strategy σ′j such that π((~σ−j , σ′j)) |= αj in GPAR. �en, due to Lemma 1, we

have that π((~σ−j , σ′j)) |= γj in GLTL and so σ′j would be a bene�cial deviation for

player j in GLTL too—a contradiction. On the other hand, for every ~σ ∈ NE(GPAR),

we can reason in a symmetric way and conclude that ~σ ∈ NE(GLTL).

5. Characterising Nash Equilibria

�anks to �eorem 1, we can focus our a�ention on Parity games, since a tech-

nique for solving such games will also provide a technique for solving their associated

LTL games. To do this we characterise the set of Nash equilibria in the Parity game

construction GPAR in our algorithm. �e existence of Nash Equilibria in LTL games

can be characterised in terms of punishment strategies and memoryful reasoning [40].

We will show that a similar characterisation holds here in a parity games framework,

where only memoryless reasoning is required. To do this, we �rst introduce the notion

of punishment strategies and regions formally, as well as some useful de�nitions and

notations. In what follows, given a (memoryless) strategy pro�le ~σ = (σ1, . . . , σn)

de�ned on a state s ∈ St of a Parity game GPAR, that is, such that s0i = s for every

20

i ∈ N, we write GPAR, ~σ, s |= αi if π(~σ) |= αi in GPAR. Moreover, if s = s0 is the

initial state of the game, we omit it and simply write GPAR, ~σ |= αi in such a case.

De�nition 4 (Punishment strategies and regions). For a Parity game GPAR and a

player i ∈ N, we say that ~σ−i is a punishment (partial) strategy pro�le against i in a

state s if, for all strategies σ′i ∈ Σi, it is the case that GPAR, (~σ−i, σ′i), s 6|= αi. A state

s is punishing for i if there exists a punishment (partial) strategy pro�le against i in s.

By Puni(GPAR) we denote the set of punishing states, the punishment region, for i in

GPAR.

To understand the meaning of a punishment (partial) strategy pro�le, it is useful

to think of a modi�cation of the game GPAR, in which player i still has its goal αi,

while the rest of the players are collectively playing in an adversarial mode, i.e., try-

ing to make sure that i does not achieve αi. �is scenario is represented by a two-

player zero-sum game in which the winning strategies of the (coalition) player, de-

noted by −i, correspond (one-to-one) to the punishment strategies in the original

game GPAR. As described in [40], knowing the set of punishment (partial) strategy

pro�les in a given game is important to compute its set of Nash Equilibria. For this

reason, it is useful to compute the set Puni(GPAR), that is, the set of states in the

game from which a given player i can be punished. (e.g., to deter undesirable unilat-

eral player deviations). To do this, we reduce the problem to computing a winning

strategy in a turn-based two-player zero-sum parity game, whose de�nition is as fol-

lows.

De�nition 5. For a (concurrent multi-player) Parity game

GPAR = (N,St, (Aci)i∈N, s0, tr, (αi)i∈N)

and player j ∈ N, the sequentialisation of GPAR with respect to player j is the (turn-

based two-player) parity game GjPAR =〈V0, V1,E , α〉 where

• V0 = St and V1 = St× ~Ac−j ;

• E = {(s, (s,~a−j)) ∈ St× (St× ~Ac−j)}∪{((s,~a−j), s′) ∈ (St× ~Ac−j)×St :

21

s1 s2(~a−j , aj) s1 (s1,~a−j) s2

Figure 3: Sequentialisation of a game. On the le�, a representation of a transition from s1 to s2 using

action pro�le (~a−j , aj). On the right, the two states s1 and s2 are assigned to Player 0 in the parity game,

which are interleaved with a state of Player 1 corresponding to the choice of ~a−j by coalition −j in the

original game.

∃a′j ∈ Acj . s
′ = tr(s, (~a−j), a′j)};

• α : V0 ∪ V1 → N is such that

α(s) = αj(s) + 1 and α(s,~a−j) = αj(s) + 1.

�e formal connection between the notion of punishment in GPAR and the set

of winning strategies in GjPAR is established in the following theorem, where by

Win(GjPAR) we denote the winning region of Player 0 in GjPAR, that is, the states

from which Player 0, representing the set of players −j = N \ {j} (the coalition of

players not including j), has a memoryless winning strategy against player j in the

two-player zero-sum parity game GjPAR.

�eorem 2. For all states s ∈ St, it is the case that s ∈ Punj(GPAR) if and only if

s ∈Win(GjPAR). In other words, it holds that Punj(GPAR) = Win(GjPAR) ∩ St.

Proof. �e proof goes by double inclusion. From le� to right, assume s ∈ Punj(GPAR)

and let ~σ−j be a punishment strategy pro�le against player j in s, i.e., such that

GPAR, (~σ−j , σ′j), s 6|= αj , for every strategy σ′j ∈ Σj of player j. We now de�ne a

strategy σ0 for player 0 in GjPAR that is winning in s. In order to do this, �rst observe

that, for every �nite path π′≤k ∈ V ∗ · V0 in GjPAR starting from s, there is a unique

�nite sequence of action pro�les ~a0−j , . . . ,~ak−j and a sequence π≤k = s0, . . . , sk+1 of

states in St∗ such that

π′≤k = s0, (s0,~a0−j), . . . , s
k, (sk,~ak−j), . . . , s

k+1 .

Now, for every path π′≤k of this form that is consistent with ~σ−j , i.e., the sequence

~a0−j , . . . ,~a
k−1
−j is generated by ~σ−j , de�ne σ0(π′≤k) = (sk+1,~ak+1

−j), where ~ak+1
−j is

the action pro�le selected by ~σ−j . To prove that σ0 is winning, consider a strategy

σ1 for Player 1 and the in�nite path π′ = π((σ0, σ1)) generated by (σ0, σ1). It is

22

not hard to see that the sequence π′odd of odd positions in π′ belongs to a path π in

GPAR and it is consistent with ~σ−j . �us, since ~σ−j is a punishment strategy, π′odd
does not satisfy αj . Moreover, observe that the parity of the sequence π′even of even

positions equals that of π′odd. �us, we have that Inf(λ′(π′)) + 1 = Inf(λ′(π′odd)) +

1 ∪ Inf(λ′(π′even)) + 1 = Inf(λ(π)) and so π′ is winning for player 0 in GjPAR and σ0
is a winning strategy.

From right to le�, let s ∈ St ∩ Win(GjPAR) and let σ0 be a winning strat-

egy for Player 0 in GjPAR, and assume σ0 is memoryless. Now, for every player i,

with i 6= j, de�ne the memoryless strategy σi in GPAR such that, for every s′ ∈ St,

if σ0(s′) = (s′,~a−j), then σi(s′) = (~a−j)i 7, i.e., the action that player i takes in

σ0 at s′. Now, consider the (memoryless) strategy pro�le ~σ−j given by the com-

position of all strategies σi, and consider a play π in GPAR, starting from s, that

is consistent with ~σ−j . �us, there exists a play π′ in GiPAR, consistent with σ0,

such that π = π′odd. Moreover, since π′odd = π′even, we have that Inf(λ′(π′)) =

Inf(λ′(π′odd)) ∪ Inf(λ′(π′even)) = Inf(λ(π))− 1. Since π′ is winning for Player 0, we

know that π 6|= αj and so ~σ−j is a punishment strategy against Player j in s.

De�nition 5 and �eorem 2 not only make a bridge from the notion of punish-

ment strategy to the notion of winning strategy for two-player zero-sum games, but

also provide a way to understand how to compute punishment regions as well as

how to synthesise an actual punishment strategy in Parity games. In this way, by

computing winning regions and winning strategies in these games we can solve the

synthesis problem for individual players in the original game with LTL goals, one of

the problems we are interested in. �us, from De�nition 5 and �eorem 2, we have

the following corollary.

Corollary 1. Computing Puni(GPAR) can be done in polynomial time with respect

to the size of the underlying graph of the game GPAR and exponential in the size of the

priority functionαi, that is, to the size of the range ofαi. Moreover, there is a memoryless

strategy ~σi that is a punishment against player i in every state s ∈ Puni(GPAR).

7By an abuse of notation, we let σi(s′) be the value of τi(s′).

23

s0 s1 . . . sk sk+1

s′

. . .

. . .

~a0 ~a1 ~ak−1 ~ak

((~ak)−j , a′j)

σ
punj
i

~ak+1

Figure 4: Representation of the strategy σi. At the beginning, player i follows the transducer

Tη that generates the action pro�le run η. �e strategy adheres to it until a unilateral deviation

from player j occurs, here represented at the k-th step of the play. Once the deviation has

occurred, and the game entered a state s′, player i starts executing the strategy σpunj
i , to employ

the punishment strategy against player j.

As described in [40], in any (in�nite) run sustained by a Nash equilibrium ~σ in

deterministic and pure strategies, that is, in π(~σ), it is the case that all players that

do not get their goals achieved in π(~σ) can deviate from such a (Nash equilibrium)

run only to states where they can be punished by the coalition consisting of all other

players in the game. To formalise this idea in the present se�ing, we need one more

concept about punishments, de�ned next.

De�nition 6. An action pro�le run η = ~a0,~a1, . . . ∈ ~Ac
ω

is punishing-secure in s for

player j if, for all k ∈ N and a′j , we have tr(πj , ((~ak)−j , a′j)) ∈ Punj(GPAR), where

π is the only play in GPAR starting from s and generated by η.

Using the above de�nition, we can characterise the set of Nash equilibria of a

given game. Recall that strategies are formalised as transducers, i.e., as �nite state

machines with output, so such Nash equilibria strategy pro�les produce runs which

are ultimately periodic. Moreover, since in every run π there are players who get their

goals achieved in π (and therefore do not have an incentive to deviate from π) and

players who do not get their goals achieve in π (and therefore may have an incentive

to deviate from π), we will also want to explicitly refer to such players. To do that, the

following notation will be useful: LetW (GPAR, ~σ) = {i ∈ N : GPAR, ~σ |= αi} denote

the set of player that get their goals achieved in π(~σ). We also write W (GPAR, π) =

{i ∈ N : GPAR, π |= αi}.

�eorem 3 (Nash equilibrium characterisation). For a Parity game GPAR, there is a

Nash Equilibrium strategy pro�le ~σ ∈ NE(GPAR) if and only if there is an ultimately

24

periodic action pro�le run η such that, for every player j ∈ L = N \W (GPAR, π), the

run η is punishing-secure for j in state s0, where π is the unique path generated by η

from s0.

Proof. �e proof is by double implication. From le� to right, for ~σ ∈ NE(GPAR), let

η be the ultimately periodic sequence of action pro�les generated by ~σ. Moreover,

assume for a contradiction that η is not punishing-secure for some j ∈ L. By the

de�nition of punishment-secure, there is k ∈ N and action a′j ∈ Acj for player j

such that s′ = tr(πk, ((~ak)−j , a′j) /∈ Punj(GPAR). Now, consider the strategy σ′j that

follows η up to the (k−1)-th step, executes action a′j on step k to get into state s′, and

applies a strategy that achieves αj from that point onwards. Note that such a strategy

is guaranteed to exist since s′ /∈ Punj(GPAR). �erefore, GPAR, (~σ−j , σ′j) |= αj

and so σ′j is a bene�cial deviation for player j, a contradiction to ~σ being a Nash

equilibrium.

From right to le�, we need to de�ne a Nash equilibrium ~σ assuming only the

existence of η. First, recall that η can be generated by a �nite transducer Tη =

(Qη, q
0
η, δη, τη) where δη : Qη → Qη and τη : Qη → ~Ac. Moreover, for every

player i and deviating player j, with i 6= j, there is a (memoryless) strategy σpunji to

punish player j in every state in Punj(GPAR). By suitably combining the transducer

with the punishment strategies, we de�ne the following strategy σi = (Qi, q
0
i , δi, τi)

for player i where

• Qi = St×Qη × (L ∪ {>}) and q0i = (s0, q0η,>);

• δi = Qi × ~Ac→ Qi is de�ned as

δi((s, q,>),~a) =





(tr(s,~a), δη(q),>), if a = τη(q)

(tr(s,~a), δη(q), j), a−j = (τη(q))−j and ~aj 6= (τη(q))j

⊥, otherwise

8

• τi : Qi → Aci is such that

8For completeness, the function δi is assumed to take an available action. However, this is not important,

as it is clear from the proof we never use this case.

25

– τi(s, q,>) = (τη(q))i, and

– τi(s, q, j) = σ
punj
i (s).

To understand how strategy σi works, observe that its set of internal states is given

by the following triple. �e �rst component is a state of the game, remembering

the position of the execution. �e second component is a state of the transducer

Tη , which is used to employ the execution of the action pro�le run η. �e third

component is either the symbol >, used to �ag that no deviation has occurred, or the

name of a losing player j, used to remember that such a player has deviated from η.

At the beginning of the play, strategy σi starts executing the actions prescribed by

the transducer Tη . It sticks to it until some losing player j performs a deviation. In

such a case, the third component of the internal state of σi switches to remember the

deviating player. Moreover, from that point on, it starts executing the punishment

strategy σpunji . Recall that parity conditions are pre�x-independent. �erefore, no

ma�er the result of the execution, if all the players start playing according to the

punishment strategy σpunji , the resulting path will not satisfy the parity condition

αj . Now, de�ne σ to be the collection of all σi. It remains to prove that ~σ is a Nash

Equilibrium.

First, observe that since~σ produces exactly η, we haveW (GPAR, ~σ) = W (GPAR, η),

that is, the players that get their goals achieved in π(~σ) and η are the same. �us,

only players in L could have a bene�cial deviation. Now, consider a player j ∈ L

and a strategy σ′j and let k ∈ N be the minimum (�rst) step where σ′j produces

an outcome that di�ers from σj when executed along with ~σ−j . We write π′ for

π((~σ−j , σ′j)). �us, we have πh = π′h for all h ≤ k and πk+1 6= π′k+1. Hence π′k+1 =

tr(π′k, (ηk)−j , a′j) = tr(πk, (ηk)−j , a′j) ∈ Punj(GPAR) and GPAR, (~σ−j , σ′j) 6|= αj ,

since σ−j is a punishment strategy from π′k+1. �us, there is no bene�cial deviation

for j and ~σ is a Nash equilibrium.

6. Computing Nash Equilibria

�eorem 3 allows us to reduce the problem of �nding a Nash equilibrium to �nding

a path in the game satisfying certain properties, which we will show how to check

26

using DPW and DSW automata. To do this, let us �x a given set W ⊆ N of players

in a given game GPAR, which are assumed to get their goals achieved. Now, due to

�eorem 3, we have that an action pro�le run η corresponds to a Nash equilibrium

with W being the set of “winners” in the game if, and only if, the following two

properties are satis�ed:

• η is punishment-secure for j in s0, for all j ∈ L = N \W ;

• GPAR, π |= αi, for every i ∈W ;

where π is, as usual, the path generated by η from s0.

To check the existence of such η, we have to check these two properties. First,

note that, for η to be punishment-secure for every losing player j ∈ L, the game

has to remain in the punishment region of each j. �is means that an acceptable

action pro�le run needs to generate a path that is, at every step, contained in the

intersection
⋂
j∈L Punj(GPAR). �us, to �nd a Nash equilibrium, we can remove all

states not in such an intersection. We also need to remove some edges from the game.

Indeed, consider a state s and a partial action pro�le ~a−j . It might be the case that

tr(s, (~a−j , a′j)) /∈ Punj(GPAR), for some a′j ∈ Acj . �erefore, an action pro�le run

that executes the partial pro�le ~a−j over s cannot be punishment-secure, and so all

outgoing edges from (s,~a−j), can also be removed. A�er doing this for every j ∈ L,

we obtain G−LPAR, the game resulting from GPAR a�er the removal of the states and

edges just described. As a consequence, G−LPAR has all and only the paths that can be

generated by an action pro�le run that is punishment-secure for every j ∈ L.

�e only thing that remains to be done is to check whether there exists a path in

G−LPAR that satis�es all players in W . To do this, we use DPW and DSW automata.

Since players goals are parity conditions, a path satisfying player i is an accepting

run of the DPW Ai where the set of states and transitions are exactly those of G−LPAR

and the acceptance condition is given by αi. �en, in order to �nd a path satisfying

the goals of all players in W , we can solve the emptiness problem of the automaton

intersection×i∈W Ai. However, observe that eachAi di�ers from each other only in

its acceptance condition αi. Moreover, each parity conditionα = (F1, . . . , Fn) can be

regarded as a Street condition of the form ((E1, C1), . . . , (Em, Cm)) with m = dn2 e

27

and (Ei, Ci) = (F2i+1,
⋃
j≤i F2j), for every 0 ≤ i < m. �erefore, the intersection

language of×i∈W Ai can be recognized by a Street automaton over the same set of

states and transitions and the concatenation of all the Stree� conditions determined

by the parity conditions of the players in W . �e overall translation is a DSW au-

tomaton with a number of Stree� pairs being logarithmic in the number of its states,

whose emptiness can be solved in polynomial time [66]. Finally, as we �xed W at the

beginning, all we need to do is to use the procedure just described for each W ⊆ N, if

needed (see Algorithm 1). 9

Concerning the complexity analysis, consider again Algorithm 1 and denote by

n the number of agents and |StLTL| the number of states. Observe that Line 3 of the

algorithm builds a Parity game GPAR by making the product construction between

GLTL and all the DPW automata Aγi , whose state space is 22
|γi| , and the number of

priorities is 2|γi|. �us, the number of states of GPAR is |StPAR| = |StLTL| ·22
|γ1| · . . . ·

22
|γn| . Now, on the one hand, Line 6 requires to solve a parity game on the state-graph

of GPAR with 2γi priorities. �is is solved by applying Zielonka’s algorithm [79], that

works in time (|StPAR|)2 · (|StPAR|)2
γi , thus polynomial in the state space of GPAR

and doubly exponential in the size of objectives γi’s. On the other hand, Line 12

calls for the Non-Emptiness procedure of a DSW whose number of Street pairs is

linear in the sum of priorities of the automataAγ , . . . ,Aγn and so logarithmic in its

state-space (that is doubly exponential in the size of the objectives). Such procedure

is polynomial in the state space of the automaton [66, Corollary 10.8] and therefore

polynomial in |StPAR|. Finally, consider the consider the loops of Line 4 and Line 5,

respectively. �e �rst is on all the possible subsets of agents, and thus of length 2n.

�e second is on all the possible agents, and thus of length n. �is sums up to an

overall complexity for Algorithm 1 of:

2n · n · ((|StPAR|)2 · (|StPAR|)
∑
i∈N 2γi + |StPAR|).

Recall that |StPAR| is linear in the set of states of the GLTL and doubly exponential

9Some previous techniques, e.g. [14], to the computation of pure Nash equilibria are not optimal as they

have exponential space complexity in the number of players |N|.

28

in every objective γi’s of the agents. �us, the procedure is polynomial in |StLTL|,
exponential in N , and doubly exponential in the size of the formulas |γ1|, . . . , |γN |.

7. Synthesis and Veri�cation

We now show how to solve the synthesis and veri�cation problems using Non-

Emptiness. For synthesis, the solution is already contained in the proof of �eorem 3,

so we only need to sketch out the approach here. Note that, in the computation of

punishing regions, the algorithm builds, for every player i and potential deviator j,

a (memoryless) strategy that player i can play in the collective strategy pro�le ~σ−j

in order to punish player j, should player j wishes to deviate. If a Nash equilibrium

exists, the algorithm also computes a (ultimately periodic) witness of it, that is, a

computation π in G, that, in particular, satis�es the goals of players in W . At this

point, using this information, we are able to de�ne a strategy σi for each player i ∈ N

in the game (i.e., including those not inW), as follows: while no deviation occurs, play

the action that contributes to generate π, and if a deviation of player j occurs, then

play the (memoryless) strategy σpunji that is de�ned in the game to punish player j in

case j were to deviate. Notice, in addition, that because of Lemma 1 and �eorem 1,

every strategy for player i in the game with parity goals is also a valid strategy for

player i in the game with LTL goals, and that such a strategy, being bisimulation-

invariant, is also a strategy for every possible bisimilar representation of player i. In

this way, our technique can also solve the synthesis problem for every player, that

is, can compute individual bisimulation-invariant strategies for every player (system

component) in the original multi-player game (concurrent system).

For veri�cation, one can use a reduction of the following two problems, called

E-Nash and A-Nash in [41, 77, 42], to Non-Emptiness.

Given: Game GLTL, LTL formula ϕ.

E-Nash: Is it the case that π(~σ) |= ϕ, for some ~σ ∈ NE(GLTL) ?

A-Nash: Is it the case that π(~σ) |= ϕ, for all ~σ ∈ NE(GLTL) ?

We write (GLTL, ϕ) ∈ E-Nash to denote that (GLTL, ϕ) is an instance of E-Nash, i.e.,

29

given a game GLTL and a LTL formula ϕ, the answer to E-Nash problem is a “yes”;

and, similarly for A-Nash.

Because we are working on a bisimulation-invariant se�ing, we can ensure some-

thing even stronger: that for any two games GLTL and G′LTL, whose underlying CGSs

areM andM′, respectively, we know that ifM is bisimilar toM′, then (GLTL, ϕ) ∈
E-Nash if and only if (G′LTL, ϕ) ∈ E-Nash, for all LTL formulae ϕ; and, similarly for

A-Nash, as desired.

In order to solve E-Nash and A-Nash via Non-Emptiness, one could use the

following result, whose proof is a simple adaptation of the same result for iterated

Boolean games [41] and for multi-player games with LTL goals modelled using SRML [42],

which was �rst presented in [35].

Lemma 2. LetG be a game and ϕ be an LTL formula. �ere is a gameH of linear size

in G, such that NE(H) 6= ∅ if and only if ∃~σ ∈ NE(G). π(~σ) |= ϕ .

However, since we have Algorithm 1 at our disposal, an easier – and more direct

– solution can be obtained. To solve E-Nash we can modify line 12 of Algorithm 1

to include the restriction that such an algorithm, which now receives ϕ as a param-

eter, returns “Yes” in line 13 if and only if ϕ is satis�ed in some run in the set of

Nash equilibrium witnesses. �e new line 12 is “if L(×i∈W (Si) × Sϕ) 6= ∅”, where

Sϕ is the DSW automaton representing ϕ. All complexities remain the same; the

modi�ed algorithm for E-Nash is denoted as Algorithm 1’. We can then use Algo-

rithm 1’ to solve A-Nash, also as described in [35]: essentially, we can check whether

Algorithm 1’(GLTL,¬ϕ) returns “No” in line 16. If it does, then no Nash equilibrium

of GLTL satis�es ¬ϕ, either because no Nash equilibrium exists at all (thus, A-Nash

is vacuously true) or because all Nash equilibria of GLTL satisfy ϕ, then solving A-

Nash positively. Note that in this case, since A-Nash is solved positively when the

algorithm returns “No” in line 16, then no speci�c Nash equilibrium strategy pro�le

is synthesised, as expected. However, if the algorithm returns “Yes”, that is, the case

when the answer to A-Nash problem with (GLTL, ϕ) instance is negative, then a strat-

egy pro�le is synthesised from Algorithm 1’ which corresponds to a counter-example

for (GLTL, ϕ) ∈ A-Nash. It should be easy to see that implementing E-Nash and A-

30

Nash is straightforward from Algorithm 1. Also, as already known, it is also easy to

see that Algorithm 1’ solves Non-Emptiness if and only if (GLTL,>) ∈ E-Nash.

8. Implementation

We have implemented the decision procedures presented in this paper. Our im-

plementation uses SRML [74] as a modelling language. SRML is based on the Reac-

tive Modules language [6] which is used in a number of veri�cation tools, including

PRISM [56] and MOCHA [9]. �e tool that implements our algorithms is called EVE

(for Equilibrium Veri�cation Environment) [45]. EVE is the �rst and only tool able

to analyse the linear temporal logic properties that hold in equilibrium in a concur-

rent, reactive, and multi-agent system within a bisimulation-invariant framework. It

is also the only tool that supports all of the following combined features: a high-level

description language using SRML, general-sum multi-player games with LTL goals,

bisimulation-invariant strategies, and perfect recall. It is also the only tool for Nash

equilibrium analysis that relies on a procedure based on the solution of parity games,

which has allowed us to solve the (rational) synthesis problem for individual play-

ers in the system using very powerful techniques originally developed to solve the

synthesis problem from (linear-time) temporal logic speci�cations.

To the best of our knowledge, there are only two other tools that can be used

to reason about temporal logic equilibrium properties of concurrent/multi-agent sys-

tems: PRALINE [16] and MCMAS [19, 20].

PRALINE allows one to compute a Nash equilibrium in a game played in a con-

current game structure [16]. �e underlying technique uses alternating Büchi au-

tomata and relies on the solution of a two-player zero-sum game called the ‘suspect

game’ [14]. PRALINE can be used to analyse games with di�erent kinds of players

goals (e.g., reachability, safety, and others), but does not permit LTL goals, and does

not compute bisimulation-invariant strategies.

MCMAS is a model checking tool for multi-agent systems [60]. Since it can be

used to model check Strategy Logic (SL [64]) formulae [20], and SL can express the

existence of a Nash equilibrium, one can model a multi-agent system in MCMAS and

31

check for the existence of a Nash equilibrium in such a system using SL. However,MC-

MAS only supports SL with memoryless strategies (while our implementation does

not have this restriction) and, as PRALINE, does not compute bisimulation-invariant

strategies either.

From the many di�erences between PRALINE, MCMAS, and EVE (and their asso-

ciated underlying reasoning and veri�cation techniques), one of the most important

ones is bisimulation-invariance, a feature needed to be able to do veri�cation and syn-

thesis, e.g., when using symbolic methods with OBDDs or some model-minimisation

techniques. Not being bisimulation-invariant also means that in some cases PRALINE,

MCMAS, and EVE would deliver completely di�erent answers. For instance, unlike

EVE, with PRALINE and MCMAS it may be the case that for two bisimilar systems

PRALINE and MCMAS would compute a Nash equilibrium in one of them and none

in the other. A particular instance is the “motivating example” in [38]. Since the two

systems there are bisimilar, EVE is able to compute a bisimulation-invariant Nash

equilibrium in both systems, while PRALINE and MCMAS, both of which are not us-

ing bisimulation-invariant model of strategies, cannot. �e experiment supporting

this claim is reported in Section 8.4 along with the performance results. Indeed, even

in cases where all tools are able to compute a Nash equilibrium, EVE outperforms the

other two tools as the size of the input system grows, despite the fact that the model

of strategies we use in our procedure is richer in the sense that it takes into account

more information of the underlying game.10

8.1. Tool Description

Modelling Language. Systems in EVE are speci�ed with the Simple Reactive Modules

Language (SRML [74]), that can be used to model non-deterministic systems. Each

system component (agent/player) in SRML is represented as a module, which con-

sists of an interface that de�nes the name of the module and lists a non-empty set of

Boolean variables controlled by the module, and a set of guarded commands, which de-

10As mentioned before, not all games can be tested in all tools since, for instance, PRALINE does not

support LTL objectives, but only goals expressed directly as Büchi conditions.

32

�ne the choices available to the module at each state. �ere are two kinds of guarded

commands: init, used for initialising the variables, and update, used for updating

variables subsequently.

A guarded command has two parts: a “condition” part (the “guard”) and an “ac-

tion” part. �e “guard” determines whether a guarded command can be executed or

not given the current state, while the “action” part de�nes how to update the value

of (some of) the variables controlled by a corresponding module. Intuitively, ϕ ; α

can be read as “if the condition ϕ is satis�ed, then one of the choices available to the

module is to execute α”. Note that the value of ϕ being true does not guarantee the

execution of α, but only that it is enabled for execution, and thus may be chosen. If

no guarded command of a module is enabled in some state, then that module has no

choice and the values of the variables controlled by it remain unchanged in the next

state.

Formally, an SRML module mi is de�ned as a triple mi = (Φi, Ii, Ui), where

Φi ⊆ Φ is the �nite set of Boolean variables controlled by mi, Ii a �nite set of init

guarded commands, such that for all g ∈ Ii, we have ctr(g) ⊆ Φi, and Ui a �nite

set of update guarded commands, such that for all g ∈ Ui, we have ctr(g) ⊆ Φi. A

guarded command g over a set of variables Φ is an expression

g : ϕ; x′1 := ψ1; . . . ;x′k := ψk

where the guard ϕ is a propositional logic formula over Φ, each xi is a member of

Φ and ψi is a propositional logic formula over Φ. Let guard(g) denote the guard of

g, thus, in the above rule, we have guard(g) = ϕ. It is required that no variable xi
appears on the le� hand side of more than one assignment statements in the same

guarded command, hence no issue on the (potentially) con�icting updates arises. �e

variables x1, . . . , xk are controlled variables in g ∈ Ui and we denote this set by

ctr(g). If no guarded command of a module is enabled, then the values of all variables

in ctr(g) are unchanged. A set of guarded commands is said to be disjoint if their

controlled variables are mutually disjoint. To make it clearer, here is an example of a

33

module toggle controls x

init

:: >; x′ := >;

:: >; x′ := ⊥;

update

:: ¬x; x′ := >;

:: x; x′ := ⊥;

Figure 5: Example of module toggle in SRML.

guarded command:

(p ∧ q)︸ ︷︷ ︸
guard

; p′ := >; q′ := ⊥︸ ︷︷ ︸
action

�e guard is the propositional logic formula (p∧ q), so this guarded command will be

enabled if both p and q are true. If the guarded command is chosen (to be executed),

then in the next time-step, variable p will be assigned true and variable q will be

assigned false.

Figure 5 shows a module named toggle that controls a Boolean variable named

x. �ere are two init guarded commands and two update guarded commands. �e

init guarded commands de�ne two choices for the initialisation of variable x: true or

false. �e �rst update guarded command says that if x has the value of true, then the

corresponding choice is to assign it to false, while the second command says that if x

has the value of false, then it can be assigned to true. Intuitively, the module would

choose (in a non-deterministic manner) an initial value for x, and then on subsequent

rounds toggles this value. In this particular example, the init commands are non-

deterministic, while the update commands are deterministic. We refer to [42] for

further details on the semantics of SRML. In particular, in Figure 12 of [42], we detail

how to build a Kripke structure that models the behaviour of an SRML system. In

addition, we associate each module with a goal, which is speci�ed as an LTL formula.

At this point, readers might notice that the way SRML modules are de�ned leads

to the possibility of having multiple initial states – which appears to contradict the

34

GLTL

Kripke structure

(γi)i∈N

LTL goals

(Ai)i∈N

DPWs

⊗ G−LPAR

s0 si

GPAR

ρ

Figure 6: High-level work�ow of EVE.

de�nition of CMGS. However, this is not a problem, since we can always add an extra

“pre”-initial state whose outgoing edges are labelled according to init guarded com-

mands, and use it as the “real” initial state.

Automated Temporal Equilibrium Analysis. Once a multi-agent system is mod-

elled in SRML, it can be seen as a multi-player game in which players (the modules)

use strategies to resolve the non-deterministic choices in the system. EVE uses Algo-

rithm 1 to solve Non-Emptiness. �e main idea behind this algorithm is illustrated

in Figure 6. �e general �ow of the implementation is as follows. Let GLTL be a game,

modelled using SRML, with a set of players/modules N = {1, . . . , n} and LTL goals

Γ = {γ1, . . . , γn}, one for each player. Using GLTL we construct an associated con-

current game with parity goals GPAR in order to shi� reasoning on the set of Nash

equilibria of GLTL into the set of Nash equilibria of GPAR. �e basic idea of this con-

struction is, �rstly, to transform all LTL goals in GLTL into deterministic parity word

(DPW) automata. To do this, we use LTL2BA tool [36, 61] to transform the formulae

into nondeterministic Büchi word (NBW) automata. From NBWs, we construct the

associated deterministic parity word (DPW) automata via construction described in

[67]. Secondly, to perform a product construction of the Kripke structure that repre-

sents GLTL with the collection of DPWs in which the set of Nash equilibria of the input

game is preserved. With GPAR in our hands, we can then reason about Nash equilibria

by solving a collection of parity games. To solve these parity games, we use PGSolver

35

tool [34, 2]. EVE then iterates through all possible set of “winners” W ⊆ N (Algo-

rithm 1 line 4) and computes a punishment region Punj(GPAR) for each j ∈ L = N\W ,

with which a reduced parity game G−LPAR =
⋂
j∈L Punj(GPAR) is built. Notice that for

each player j, Punj(GPAR) need only computed once and can be stored, thus result-

ing in a more e�cient running time. Lastly, EVE checks whether there exists a path

ρ in G−LPAR that satis�es the goals of each i ∈ W . To do this, we translate G−LPAR into a

deterministic Stree� automata, whose language is empty if and only if so is the set

of Nash equilibria of GPAR. For E-Nash problem, we simply need to �nd a run in the

witness returned when we check for Non-Emptiness; this can be done via automata

intersection11.

EVE was developed in Python and available online from [1]. EVE takes as input

a concurrent and multi-agent system described in SRML code, with player goals and

a property ϕ to be checked speci�ed in LTL. For Non-Emptiness, EVE returns “YES”

(along with a set of winning players W) if the set of Nash equilibria in the system is

not empty, and returns “NO” otherwise. For E-Nash (A-Nash), EVE returns “YES” if

ϕ holds on some (every) Nash equilibrium of the system, and “NO” otherwise.

In the next subsection, we present some case studies to evaluate the performance

of EVE. �e case studies are based on distributed and concurrent systems that can nat-

urally be modelled as multi-agent systems. We note, however, that such case studies

bear no special relevance to multi-agent systems research. Instead, our only purpose

is to use such case studies and multi-agent systems to evaluate EVE’s performance,

rather than to solve problems of particular relevance in the AI or multi-agent sys-

tems literatures. Nevertheless, one could easily see that the case studies are based on

systems that one can imagine to be found in many AI systems nowadays.

8.2. Case Studies

In this section, we present two examples from the literature of concurrent and

distributed systems to illustrate the practical usage of EVE. Among other things, these

two examples di�er in the way they are modelled as a concurrent game. While the

11For A-Nash is straightforward, since it is the dual of E-Nash.

36

Service

RM

RM RM

FE FE

gossip

query update

query update

Clients

Figure 7: Gossip framework structure.

module RM1 controls s1

init

:: true ∼> s1’:=true;

update

:: s1 ∼> s1’:=false;

:: s1 ∼> s1’:=true;

:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;

goal

:: G F (!s1);

Figure 8: SRML machine readable code for mod-

ule RM1 as wri�en in EVE’s input code.

�rst one is played in an arena implicitly given by the speci�cation of the players in the

game (as done in [42]), the second one is played on a graph, e.g., as done in [7] with

the use of concurrent game structures. Both of these models of games (modelling

approaches) can be used within our tool. We will also use these two examples to

evaluate EVE’s practical performance and compare it against MCMAS and PRALINE

in Section 8.3. Furthermore, since PRALINE and MCMAS use di�erent modelling

languages – ISPL in the case of MCMAS – we need to translate the examples modelled

in SRML into PRALINE’s input language and ISPL. Given the high-level nature of

SRML, the translation might introduce exponential blowup. However, we argue that

this is not a problem from the comparison point of view, since the exponential blowup

is also unavoidable when building Kripke structures from SRML games.

Gossip protocols. �ese are a class of networking and communication protocols that

mimic the way social networks disseminate information. �ey have been used to

solve problems in many large-scale distributed systems, such as peer-to-peer and cloud

computing systems. Ladin et al. [57] developed a framework to provide high avail-

ability services via replication which is based on the gossip approach �rst introduced

in [31, 78]. �e main feature of this framework is the use of replica managers (RMs)

which exchange “gossip” messages periodically in order to keep the data updated. �e

architecture of such an approach is shown in Figure 7.

We can model each RM as a module in SRML as follows: (1) When in servicing

mode, an RM can choose either to keep in servicing mode or to switch to gossiping

mode; (2) If it is in gossiping mode and there is at least another RM also in gossiping

37

mode12, since the information during gossip exchange is of (small) bounded size, it

goes back to servicing mode in the subsequent step. We then set the goal of each RM

to be able to gossip in�nitely o�en. As shown in Figure 8, the module RM1 controls

a variable: s1. Its value being true signi�es that RM1 is in servicing mode; other-

wise, it is in gossiping mode. Behaviour (1) is re�ected in the �rst and second update

commands, while behaviour (2) is re�ected in the third update command. �e goal of

RM1 is speci�ed with the LTL formula GF ¬ s1, which expresses that RM1’s goal is

to gossip in�nitely o�en: “always” (G) “eventually” (F) gossip (¬s1).

Observe that with all RMs rationally pursuing their goals, they will adopt any

strategy which induces a run where each RM can gossip (with at least one other RM)

in�nitely o�en. In fact, this kind of game-like modelling gives rise to a powerful

characteristic: on all runs that are sustained by a Nash equilibrium, the distributed

system is guaranteed to have two crucial non-starvation/liveness properties: RMs can

gossip in�nitely o�en and clients can be served in�nitely o�en. Indeed, these prop-

erties are veri�ed in the experiments; with E-Nash: no Nash equilibrium sustains “all

RMs forever gossiping”; and with A-Nash: in all Nash equilibria at least one of the

RM is in servicing mode in�nitely o�en. We also notice that each RM is modelled as

a non-deterministic open system: non-determinism is used in the �rst two updated

commands, as they have the same guard s1 and therefore will be both enabled at the

same time; and the system is open since each module’s state space and choices depend

on the states of other modules, as re�ected by the third updated command.

Replica Control Protocol. Consensus is a key issue in distributed computing and multi-

agent systems. An important application domain is in maintaining data consistency.

Gi�ord [37] proposed a quorum-based voting protocol to ensure data consistency by

not allowing more than one processes to read/write a data item concurrently. To do

this, each copy of a replicated item is assigned a vote.

We can model a (modi�ed version of) Gi�ord’s protocol as a game as follows. �e

set of players N = {1, . . . , n} in the game is arranged in a request queue represented

12�e core of the protocol involves (at least) pairwise interactions periodically.

38

q1

q2

qn−2

qn−1

qn

q0

Figure 9: Gi�ord’s protocol modelled as a game.

by the sequence of states q1, . . . , qn, where qi means that player i is requesting to

read/write the data item. At state qi, other players in N\{i} then can vote whether

to allow player i to read/write. If the majority of players in N vote “yes”, then the

transition goes to q0, i.e., player i is allowed to read/write, and otherwise it goes to

qi+1
13. �e voting process then restarts from q1. �e protocol’s structure is shown in

Figure 9. Notice that at the last state, qn, there is only one outgoing arrow to q0. As

in the previous example, the goal of each player i is to visit q0 right a�er qi in�nitely

o�en, so that the desired behaviour of the system is sustained on all Nash equilibria of

the system: a data item is not concurrently accessed by two di�erent processes and the

data is updated in every round. �e associated temporal properties are automatically

veri�ed in the experiments in Section 8.3. Speci�cally, the temporal properties we

check are as follows. With E-Nash: there is no Nash equlibrium in which the data is

never updated; and, with A-Nash: on all Nash equilibria, for each player, its request

will be granted in�nitely o�en. Also, in this example, we de�ne a module, called

“Environment”, which is used to represent the underlying concurrent game structure,

shown in Figure 9, where the game is played.

8.3. Experiment I

In order to evaluate the practical performance of our tool and approach (against

MCMAS and PRALINE), we present results on the temporal equilibrium analysis for

the examples in Section 8.2. We ran the tools on the two examples with di�erent

13We assume arithmetic modulo (|N|+ 1) in this example.

39

Table 1: Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2: Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

numbers of players (“P”), states (“S”), and edges (“E”). �e experiments were obtained

on a PC with Intel i5-4690S CPU 3.20 GHz machine with 8 GB of RAM running Linux

kernel version 4.12.14-300.fc26.x86 64. We report the running time14 for solving Non-

14To carry out a fairer comparison (since PRALINE does not accept LTL goals), we added to PRALINE’s

running time the time needed to convert LTL games into its input.

40

Emptiness (“ν”), E-Nash (“ε”), and A-Nash (“α”). For the last two problems, since

there is no direct support in PRALINE and MCMAS, we used the reduction of E/A-

Nash to Non-Emptiness presented in [35]. Intuitively, the reduction is as follows:

given a gameG and formulaϕ, we construct a new gameH with two additional agents,

say n + 1 and n + 2, with goals γn+1 = ϕ ∨ (p ↔ q) and γn+2 = ϕ ∨ ¬(p ↔ q),

where Φn+1 = {p} and Φn+2 = {q}, p and q are fresh Boolean variables. �is means

that it is the case NE(H) 6= ∅ if and only if there exists a Nash equilibrium run in G

satisfying ϕ.

From the experiment results shown in Table 1 and 2, we observe that, in general,

EVE has the best performance, followed by PRALINE and MCMAS. Although PRA-

LINE performed be�er than MCMAS, both struggled (timed-out15) with inputs with

more than 100 edges, while EVE could handle up to 6000 edges (for Non-Emptiness).

8.4. Experiment II

�is experiment is taken from the motivating examples in [38]. Suppose the sys-

tems shown in Figure 10 and 11 represents a 3-player game, where each transition

is labelled by the actions x, y, z of player 1, 2, and 3, respectively, an asterisk ∗ be-

ing a wildcard. �e goals of the players can be represented by the LTL formulae

γ1 = Fp, γ2 = Fq, and γ3 = G¬(p ∨ q). �e system in Figure 10 has a Nash equi-

librium, whereas no (non-bisimulation-invariant strategies) Nash equilibria exists in

the (bisimilar) system in Figure 11.

In this experiment, we extended the number of states by adding more layers to

the game structures used there in order to test the practical performance of EVE,

MCMAS, and PRALINE. �e experiments were performed on a PC with Intel i7-

4702MQ CPU 2.20GHz machine with 12GB of RAM running Linux kernel version

4.14.16-300.fc26.x86 64. We divided the test cases based on the number of Kripke

states and edges; then, for each case, we report (i) the total running time16 (“time”)

and (ii) whether the tools �nd any Nash equilibria (“NE”).

15Time-out was �xed to be 7200 seconds.
16Similarly to Experiment I (Section 8.3), we added to PRALINE’s running time the time needed to convert

LTL games into its input to carry out a fairer comparison.

41

s0

p̄q̄

s1

p̄q̄

s2

pq̄

s3

p̄q

s4

p̄q̄

s′1
p̄q̄

b, a, a
b, a, a′
a, b, b
a, b, b′

b, ∗, a
a, ∗, b

∗, b, a′
∗, a, b′

a, ∗, a
b, ∗, b
∗, a, a′
∗, b, b′

a, a, ∗
b, b, ∗

a, b, a
a, b, a′
b, a, b
b, a, b′

b, ∗, a
a, ∗, b

∗, b, a′
∗, a, b′

a, ∗, a
b, ∗, b
∗, a, a′
∗, b, b′

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 10: A 3-player game with Nash equilibrium.

Table 3 shows the results of the experiments on the example in which the model

of strategies that depends only on the run (sequence of states) of the game (run-based

strategies [38]) cannot sustain any Nash equilibria, a model of strategies that is not

invariant under bisimilarity. Indeed, since MCMAS and PRALINE use this model of

strategies, both did not �nd any Nash equilibria in the game, as shown in Table 3.

EVE, which uses a model of strategies that not only depends on the run of the game

but also on the actions of players (computation-based [38]), found a Nash equilibrium

in the game. We can also see that EVE outperformed MCMAS on games with 14 or

more states. In fact, MCMAS timed-out17 on games with 17 states or more, while EVE

kept working e�ciently for games of bigger size. We can also observe that PRALINE

performed almost as e�ciently as EVE in this experiment, although EVE performed

be�er in both small and large instances of these games.

17We �xed the time-out value to be 3600 seconds (1 hour).

42

s0

p̄q̄

s1

p̄q̄

s2

pq̄

s3

p̄q

s4

p̄q̄

a, b, ∗
b, a, ∗

b, ∗, a
a, ∗, b

∗, b, a′

∗, a, b′

a, ∗, a
b, ∗, b
∗, a, a′

∗, b, b′a, a, ∗
b, b, ∗

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 11: A 3-player game without (non-bisimulation-invariant strategies) Nash equilibria.

In Table 4, we used the example in which Nash equilibria is sustained in run-

based strategies. As shown in the table, MCMAS found Nash equilibria in games with

6 and 9 states. However, since MCMAS uses imperfect recall, when the third layer

was added (case with 12 states in Table 4) to the game, it could not �nd any Nash

equilibria. Regarding running times, EVE outperformed MCMAS from the game with

12 states and beyond, where MCMAS timed-out on games with 15 or more states.

As for PRALINE, it performed comparably to EVE in this experiment, but again, EVE

performed be�er in all instances.

8.5. Experiment III

�is experiment is based on the example previously presented in Section 2. For

this particular experiment, we assume that initially the agents are located at opposing

corners of the grid; speci�cally, agent 1 is located at the top-le� corner (coordinate

(0, 0)) and agent 2 at the bo�om-right corner (n−1, n−1). A number of obstacles are

also placed (uniformly) randomly on the grid. We use a binary encoding to represent

43

Table 3: Example with no Nash equilibrium.

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

5 80 0.04 No 0.75 Yes 0.77 No

8 128 0.24 No 2.99 Yes 2.06 No

11 176 6.28 No 3.86 Yes 4.42 No

14 224 273.14 No 7.46 Yes 8.53 No

17 272 TO – 13.31 Yes 15.33 No
...

...
...

...
...

...
...

...

50 800 TO – 655.80 Yes 789.77 No

Table 4: Example with Nash equilibria

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

6 96 0.02 Yes 1.09 Yes 1.19 Yes

9 144 0.77 Yes 3.36 Yes 3.76 Yes

12 192 65.31 No 7.45 Yes 8.89 Yes

15 240 TO – 15.52 Yes 17.72 Yes

18 288 TO – 30.06 Yes 30.53 Yes
...

...
...

...
...

...
...

...

51 816 TO – 1314.47 Yes 1563.79 Yes

the spatial information of the grid world which includes the grid coordinates, as well

as the obstacles and the agents locations. For instance, to encode a position of an agent

1 in 4×4 grid, we need 4 Boolean variables arranged as a tuple pos1 =〈x10, x11, y10 , y11〉.
An instance of such a tuple pos1 = 〈0, 1, 1, 0〉 means that agent 1 is at (2, 1). For

each time step and i ∈ {1, 2}, the update guarded command set Ui is such a way

that agent i can only move horizontally and vertically, 1 step at a time. Furthermore,

44

3 4 5 6 7 8 9 10

100

101

102

103

104

105

size

KS
KE
GS
GE
ν
ε

Figure 12: Plots from Table 5. Y-axis is in logarithmic scale.

the commands in Ui respect the legality of movement, i.e., agent i cannot move out

of bound or into an obstacle. �e goal of each agent can be expressed by the LTL

formulae

γ1 = F(
∧

i∈{0,...,n−1}
x1i ∧

∧

i∈{0,...,n−1}
y1i)

and

γ2 = F(
∧

i∈{0,...,n−1}
¬x2i ∧

∧

i∈{0,...,n−1}
¬y2i).

A safety speci�cation (no more than one agent occupying the same position at the

same time) can be expressed by the following LTL formula:

ϕ = G¬(
∧

i∈{0,...,n−1}
(x1i ↔ x2i) ∧

∧

i∈{0,...,n−1}
(y1i ↔ y2i)).

�e experiment was obtained on a PC with Intel i5-4690S CPU 3.20 GHz machine

with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86 64. We varied

the size of the grid world (“size”) from 3 × 3 to 10 × 10, each with a �xed number

of obstacles (“# Obs”), randomly distributed on the grid. We report the number of

Kripke states (“KS”), Kripke edges (“KE”), GPAR states (“GS”), GPAR edges (“GE”),

Non-Emptiness execution time (“ν”), and E-Nash execution time (“ε”). We ran the

experiment for �ve replications, and report the average (ave), minimum (min), and

45

Table 5: Grid world experiment results.

Size # Obs KS KE GS

3 3 15(13, 18) 44(32, 72) 60(53, 73)

4 6 40(32, 52) 150(98, 200) 156(121, 209)

5 10 94(61, 125) 398(242, 512) 376(453, 741)

6 15 155(113, 185) 655(450, 800) 619(453, 741)

7 21 228(181, 290) 994(800, 1250) 909(725, 1161)

8 28 491(394, 666) 2297(1922, 2888) 1963(1577, 2665)

9 36 564(269, 765) 2687(1352, 3698) 2256(1077, 3061)

10 45 916(730, 1258) 4780(3528, 6498) 3657(2921, 5033)

Size GE ν (s) ε (s)

3 173(129, 289) 0.44(0.19, 1.14) 1.21(0.5, 2.63)

4 595(379, 801) 0.98(0.63, 1.16) 1.57(1.01, 2.24)

5 1591(969, 2049) 4.73(2.62, 6.22) 22.51(18.22, 26.25)

6 2622(1801, 3201) 9.53(7.13, 11.49) 32.32(26.05, 37.35)

7 3969(3161, 5001) 17.69(13.81, 21.58) 48.90(39.70, 59.50)

8 9190(7689, 11553) 50.91(38.38, 72.49) 121.33(95.03, 167.25)

9 10748(5409, 14793) 100.94(45.81, 137.91) 6002.80(5477.63, 6374.26)

10 19102(14113, 25993) 211.30(152.74, 311.43) 6871.16(6340.64, 7650.87)

maximum (max) times from the replications. �e results are reported in Table 5, with

the following format: ave(min,max).

From the experiment results, we see that EVE works well for Non-Emptiness up

until size 10. From the plots in Figure 12, we can clearly see that the values of each

variable, except for ε, grow exponentially. For ε (E-Nash), however, it seems to grow

faster than the rest. Speci�cally, it is clearly visible in transitions between numbers

46

that have di�erent size of bit representation, i.e., 4 to 5 and 8 to 918. �ese jumps

correspond to the time used to build deterministic parity automata on words from

LTL properties to be checked in E-Nash, which is essentially, bit-for-bit comparisons

between the position of agent 1 and 2.

From the experiments shown in this section it is also clear that the bo�leneck in

the performance is the translation of LTL goals and the high-level description of the

game into the underlying parity game. Once an explicit parity game is constructed,

then the performance improves radically. �is result is perfectly consistent with what

the theoretical complexity of the decision procedure predicts: our algorithm works

in doubly-exponential time in the size of the goals of the players, while it is only

singly-exponential in the size of the SRML speci�cation. �ese two exponential-time

reductions are in fact optimal, so there is no hope that they can be improved, at least

in theory. On the other hand, the actual subroutine that �nds a Nash equilibrium and

computes players’ strategies from the parity games representation of the problem is

rather e�cient in theory – but still not known to be in polynomial time using the best

algorithms to solve parity games. �en, it is clear that a natural way to make rational

veri�cation a feasible problem, in theory, is to look at cases where goals and/or game

representations are simpler. Such study is conducted in [46], where several positive

results on the complexity of solving the rational veri�cation problem are obtained.

9. Concluding Remarks and Related Work

�is paper contains a complete study, from theory to implementation, of the tem-

poral equilibrium analysis of multi-agent AI systems formally modelled as multi-

player games. �e two main contributions of the paper are: (1) a novel and optimal

decision procedure, based on the solution of parity games, that can be used to solve

both the rational veri�cation and the automated synthesis problems for multi-player

games; and (2) a complete implementation of the general game-theoretic modelling

and reasoning framework – with full support of goals expressed as LTL formulae and

18Since the grid coordinate index starts at 0, the “actual” transitions are 3 to 4 and 7 to 8.

47

high-level game descriptions in SRML – which is available online. Our work builds

on several previous results in the computer science (synthesis and veri�cation) and AI

literatures (multi-agent systems). Relevant related literature will be discussed next.

Equilibrium Analysis in Multi-Agent Systems. Rational veri�cation was pro-

posed as an complementary veri�cation methodology to conventional methods, such

as model checking. A legitimate question is, then, when is rational veri�cation an

appropriate veri�cation approach? A possible answer is given next. �e veri�cation

problem [24], as conventionally formulated, is concerned with checking that some

property, usually de�ned using a modal or a temporal logic [28], holds on some or on

every computation run of a system. In a game-theoretic se�ing, this can be a very

strong requirement – and in some cases even inappropriate – since only some com-

putations of the system will arise (be sustained) as the result of agents in the system

choosing strategies in equilibrium, that is, due to strategic and rational play. It was

precisely this concern that motivated the rational veri�cation approach [42, 77]. In

rational veri�cation, we ask if a given temporal property holds on some or every com-

putation run that can be sustained by agents choosing Nash equilibrium strategies.

Rational veri�cation can be reduced to the Non-Emptiness problem, as stated in this

paper; cf., [35]. As a consequence, along with the polynomial transformations in [35],

our results provide a complete framework (theory, algorithms, and implementation)

for automated temporal equilibrium analysis, speci�cally, to do rational synthesis and

formal veri�cation of logic-based multi-agent systems. �e framework, in particu-

lar, provides a concrete and algorithmic solution to the rational synthesis problem as

studied in [32], where the Boolean case (iterated games where players control Boolean

variables, whose valuations de�ne sequences of states in the game, i.e., the plays in

the game) was given an interesting automata-theoretic solution via (an extension of)

Strategy Logic [23].

Automata and logic. In computer science, a common technique to reason about

Nash equilibria in multi-player games is using alternating parity automata on in�-

nite trees (APTs [59]). �is approach is used to do rational synthesis [32, 53]; equi-

librium checking and rational veri�cation [77, 41, 42]; and model checking of logics

48

for strategic reasoning capable to specify the existence of a Nash equilibrium in con-

current game structures [7], both in two-player games [23, 30] and in multi-player

games [58, 64]. In cases where players’ goals are simpler than general LTL formu-

lae, e.g., for reachability or safety goals, alternating Büchi automata can be used in-

stead [14]. Our technique is di�erent from all these automata-based approaches, and

in some cases more general, as it can be used to handle either a more complex model

of strategies or a more complex type of goals, and delivers an immediate procedure

to synthesise individual strategies for players in the game, while being amenable to

implementation.

Tools and algorithms. In theory, the kind of equilibrium analysis that can be done

usingMCMAS [19, 22, 21] and PRALINE [16, 14] rely on the automata-based approach.

However, the algorithms that are actually implemented have a di�erent �avour. MC-

MAS uses a procedure for SL which works as a labelling algorithm since it only consid-

ers memoryless strategies [21]. On the other hand, PRALINE, which works for Büchi

de�nable objectives, uses a procedure based on the “suspect game” [14]. Despite some

similarities between our construction and the suspect game, introduced in [14], the

two procedures are substantially di�erent. Unlike our procedure, the suspect game is

a standard two-player zero-sum turn-based game H(G, π), constructed from a game

G and a possible path π, in which one of the players (“Eve”) has a winning strategy

if, and only if, π can be sustained by a Nash equilibrium in G. �e overall procedure

in [14] relies on the construction of such a game, whose size (space complexity) is

exponential in the number of agents [14, Section 4.3]. Instead, our procedure solves,

independently, a collection of parity games that avoids an exponential use of space but

may require to be executed exponentially many times. Key to the correctness of our

approach is that we deal with parity conditions, which are pre�x-independent, ensur-

ing that punishment strategies do not depend on the history of the game. Regarding

similarities, our procedure also checks for the existence of a path sustained by a Nash

Equilibrium, but our algorithm does this for every subsetW ⊆ N of agents, if needed.

Doing this (i.e., trading exponential space for exponential time), at every call of this

subroutine, our algorithm avoids building an exponentially sized game, likeH. On the

49

other hand, from a practical point of view, avoiding the construction of such an expo-

nential sized game leads to be�er performance (running times), even in cases where

no Nash equilibrium exists, when our subroutine is necessarily called exponentially

many times. In addition to all of the above, neither the algorithm used forMCMAS nor

the one used for PRALINE computes pure Nash equilibria in a bisimulation-invariant

framework, as our procedure does. While MCMAS and PRALINE are the two closest

tools to EVE, they are not the only available options to reason about games. For in-

stance, PRISM-games [55], EAGLE [71], and UPPAAL [26] are other interesting tools

to reason about games. PRISM-games allows one to do strategy synthesis for turn-

based stochastic games as well as model checking for long-run, average, and ratio

rewards properties. Only until very recently, PRISM-games had no support of equi-

librium reasoning, but see [54]. EAGLE is a tool speci�cally designed to reason about

pure Nash equilibria in multi-player games. EAGLE considers games where goals are

given as CTL formulae and allows one to check if a given strategy pro�le is a Nash

equilibrium of a given multi-agent system. �is decision problem, called Member-

ship within the rational veri�cation framework [77], is, theoretically, simpler than

Non-Emptiness: while the former can be solved in EXPTIME (for branching-time

goals expressed using CTL formulae [43]), the la�er is 2EXPTIME-complete for LTL

goals, and even 2EXPTIME-hard for CTL goals and nondeterministic strategies [43].

UPPAAL is another tool that can be used to analyse equilibrium behaviour in a sys-

tem [25, 17]. However, UPPAAL di�ers from EVE in various critical ways: e.g., it works

in a quantitative se�ing, uses statistical model checking, and most importantly, com-

putes approximate Nash equilibria of a game.

�eRole of Bisimilarity. One crucial aspect of our approach to rational veri�cation

and synthesis is the role of bisimilarity [62, 49, 27, 75]. Bisimulation is the most impor-

tant type of behavioural equivalence relation considered in computer science, and in

particular two bisimilar systems will satisfy the same temporal logic properties. In our

se�ing, it is highly desirable that properties which hold in equilibrium are sustained

across all bisimilar systems to P1, . . . , Pn. �at is, that for every (temporal logic)

property ϕ and every system component P ′i modelled as an agent in a multi-player

50

game, if P ′i is bisimilar to Pi ∈ {P1, . . . , Pn}, then ϕ is satis�ed in equilibrium – that

is, on a run induced by some Nash equilibrium of the game – by P1, . . . , Pi, . . . Pn if

and only if is also satis�ed in equilibrium by P1, . . . , P
′
i , . . . , Pn, the system in which

Pi is replaced by P ′i , that is, across all bisimilar systems to P1, . . . , Pn. �is property

is called invariance under bisimilarity. Unfortunately, as shown in [40, 38], the satis-

faction of temporal logic properties in equilibrium is not invariant under bisimilarity,

thus posing a challenge for the modular and compositional reasoning of concurrent

systems, since individual system components in a concurrent system cannot be re-

placed by (behaviourally equivalent) bisimilar ones, while preserving the temporal

logic properties that the overall multi-agent system satis�es in equilibrium. �is is

also a problem from a synthesis point of view. Indeed, a strategy for a system com-

ponent Pi may not be a valid strategy for a bisimilar system component P ′i . As a

consequence, the problem of building strategies for individual processes in the con-

current system P1, . . . , Pi, . . . Pn may not, in general, be the same as building strate-

gies for a bisimilar system P1, . . . , P
′
i , . . . Pn, again, deterring any hope of being able

to do modular reasoning on concurrent and multi-agent systems. �ese problems

were �rst identi�ed in [40] and further studied in [38]. However, no algorithmic so-

lutions to these two problems were presented in either [40] or [38]. Speci�cally, in

this paper, bisimilarity was exploited in two ways. Firstly, our construction of punish-

ment strategies (used in the characterisation of Nash equilibrium given by �eorem 3)

assumes that players have access to the history of choices that other players in the

game have made. As shown in [38, 39], with a model of strategies where this is not

the case, the preservation of Nash equilibria in the game, as well as of temporal logic

properties in equilibrium, may not be guaranteed. Secondly, our implementation in

EVE guarantees that any two games whose underlying CGSs are bisimilar, and there-

fore should be regarded as observationally equivalent from a concurrency point of

view, will produce the same answers to the rational veri�cation and automated syn-

thesis problems. It is also worth noting that even though bisimilarity is probably the

most widely used behavioural equivalence in concurrency, in the context of multi-

agent systems other relations may be preferred, for instance, equivalence relations

that take a detailed account of the independent interactions and behaviour of indi-

51

vidual components in a multi-agent system. In such a se�ing, “alternating” relations

with natural ATL∗ characterisations have been studied [8]. Alternating bisimulation

is very similar to bisimilarity on labelled transition systems [62, 49], only that when

de�ned on CGSs, instead of action pro�les (directions) taken as possible transitions,

one allows individual player’s actions, which must be matched in the bisimulation

game. Because of this, it immediately follows that any alternating bisimulation as

de�ned in [8] is also a bisimilarity as de�ned here. Despite having a di�erent formal

de�nition, a simple observation can be made: Nash equilibria are not preserved by

the alternating (bisimulation) equivalence relations in [8] either, which discourages

the use of these even stronger equivalence relations for multi-agent systems. In fact,

as discussed in [73], the “right” notion of equivalence for games (which can be indi-

rectly used as an observationally equivalence between multi-agent systems) and their

game theoretic solution concepts is, undoubtedly, an important and interesting topic

of debate, which deserves to be investigated further.

Some features of our framework. Unlike other approaches to rational synthesis

and temporal equilibrium analysis, e.g. [21, 14, 32, 42], we employ parity games [29],

which are an intuitively simple veri�cation model with an abundant associated set of

algorithmic solutions [33]. In particular, strategies in our framework, as in [42], can

depend on players’ actions, leading to a much richer game-theoretic se�ing where

Nash equilibrium is invariant under bisimilarity [38, 39], a desirable property for con-

current and reactive systems [62, 49, 27, 75]. Our reasoning and veri�cation approach

applies to multi-player games that are concurrent and synchronous, with perfect re-

call and perfect information, and which can be represented in a high-level, succinct

manner using SRML [74]. In addition, the technique developed in this paper, and its

associated implementation, considers games with LTL goals, deterministic and pure

strategies, and dichotomous preferences. In particular, strategies in these games are

assumed to be able to see all past players’ actions. We do not consider mixed or non-

deterministic strategies, or goals given by branching-time formulae. We also do not

allow for quantitative or probabilistic systems, e.g., such as stochastic games or similar

game models. We note, however, that some of these aspects of our reasoning frame-

52

work have been placed to avoid undesirable computational properties. For instance, it

is known that checking for the existence of a Nash equilibrium in multi-player games

like the ones we consider is an undecidable problem if either imperfect information

or (various kinds of) quantitative/probabilistic information is allowed [47, 72].

FutureWork. �is paper gives a solution to the temporal equilibrium problem (both

automated synthesis and formal veri�cation) in a noncooperative se�ing. In future

work, we plan to investigate the cooperative games se�ing [4]. �e paper also solves

the problem in practice for perfect information games. We also plan to investigate if

our main algorithms can be extended to decidable classes of imperfect information

games, for instance, as those studied to model the behaviour of multi-agent systems

in [47, 12, 10, 13]. Whenever possible, such studies will be complemented with prac-

tical implementations in EVE. Finally, extensions to epistemic systems and quantita-

tive information in the context of multi-agent systems may be another avenue for

further applications [50, 11], as well as se�ings with more complex preference rela-

tions [43, 32, 44, 5], which would provide a strictly stronger modelling power.

Acknowledgements. �e authors gratefully acknowledge the �nancial support of the

ERC Advanced Investigator Grant 291528 (“RACE”) at Oxford. Giuseppe Perelli con-

ducted this research partially while being member of the University of Oxford, work-

ing on the aforementioned grant, and now supported in part by European Research

Council under the European Union�s Horizon 2020 Programme through the ERC

Advanced Investigator Grant 834228 (“WhiteMech”). Muhammad Najib was sup-

ported by the Indonesia Endowment Fund for Education (LPDP) while working on

this research at the University of Oxford, and now by the European Research Council

(ERC) under the European Union�s Horizon 2020 research and innovation programme

(grant agreement no 759969). Part of this paper, focussing on the EVE system, has been

presented at ATVA’18 [45].

References

[1] EVE: A tool for temporal equilibrium analysis. https://github.com/

eve-mas/eve-parity. Accessed: 09-09-2019.

53

https://github.com/eve-mas/eve-parity
https://github.com/eve-mas/eve-parity

[2] PGSolver. https://github.com/tcsprojects/pgsolver. Ac-

cessed: 09-09-2019.

[3] I. Abraham, L. Alvisi, and J. Y. Halpern. Distributed computing meets game

theory: combining insights from two �elds. SIGACT News, 42(2):69–76, 2011.

[4] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about coalitional

games. Arti�cial Intelligence, 173(1):45–79, 2009.

[5] S. Almagor, O. Kupferman, and G. Perelli. Synthesis of controllable nash equi-

libria in quantitative objective game. In Proceedings of the Twenty-Seventh Inter-

national Joint Conference on Arti�cial Intelligence, IJCAI 2018, July 13-19, 2018,

Stockholm, Sweden, pages 35–41, 2018.

[6] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in SystemDesign,

15(1):7–48, 1999.

[7] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002.

[8] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating re�nement

relations. In CONCUR, volume 1466 of LNCS, pages 163–178. Springer, 1998.

[9] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.

MOCHA: modularity in model checking. In CAV, volume 1427 of LNCS, pages

521–525. Springer, 1998.

[10] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems. Sci-

ence of Computer Programming, 83:56–79, 2014.

[11] F. Belardinelli and A. Lomuscio. �anti�ed epistemic logics for reasoning about

knowledge in multi-agent systems. Arti�cial Intelligence, 173(9-10):982–1013,

2009.

[12] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. Veri�cation of multi-

agent systems with imperfect information and public actions. In AAMAS, pages

1268–1276. ACM, 2017.

54

https://github.com/tcsprojects/pgsolver

[13] R. Berthon, B. Maubert, and A. Murano. Decidability results for ATL* with im-

perfect information and perfect recall. In AAMAS, pages 1250–1258. ACM, 2017.

[14] P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure Nash equilibria in

concurrent deterministic games. Logical Methods in Computer Science, 11(2):1–

72, 2015.

[15] R. I. Brafman and C. Domshlak. From one to many: Planning for loosely coupled

multi-agent systems. In Proceedings of the Eighteenth International Conference on

Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September

14-18, 2008, pages 28–35, 2008.

[16] R. Brenguier. PRALINE: A tool for computing Nash equilibria in concurrent

games. In CAV, volume 8044 of LNCS, pages 890–895. Springer, 2013.

[17] P. E. Bulychev, A. David, K. G. Larsen, A. Legay, and M. Mikucionis. Computing

Nash equilibrium in wireless ad hoc networks: A simulation-based approach. In

Proceedings Second International Workshop on Interactions, Games and Protocols,

IWIGP, volume 78 of EPTCS, pages 1–14, 2012.

[18] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity

games in quasipolynomial time. In STOC, pages 252–263. ACM, 2017.

[19] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model

checker for the veri�cation of strategy logic speci�cations. In CAV, volume 8559

of LNCS, pages 525–532. Springer, 2014.

[20] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. Practical Veri�cation of

Multi-Agent Systems Against SLK Speci�cations. Information and Computation,

261(Part):588–614, 2018.

[21] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. Practical veri�cation of

multi-agent systems against SLK speci�cations. Information and Computation,

261(Part):588–614, 2018.

55

[22] P. Cermák, A. Lomuscio, and A. Murano. Verifying and synthesising multi-agent

systems against one-goal strategy logic speci�cations. In AAAI, pages 2038–

2044. AAAI Press, 2015.

[23] K. Cha�erjee, T. A. Henzinger, and N. Piterman. Strategy logic. Information and

Computation, 208(6):677–693, 2010.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-

bridge, MA, USA, 2002.

[25] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist. Uppaal

stratego. In TACAS, volume 9035 of LNCS, pages 206–211. Springer, 2015.

[26] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen. Uppaal SMC

tutorial. STTT, 17(4):397–415, 2015.

[27] R. De Nicola and F. W. Vaandrager. �ree logics for branching bisimulation.

Journal of the ACM, 42(2):458–487, 1995.

[28] E. A. Emerson. Temporal and modal logic. In Handbook of �eoretical Computer

Science, Volume B: Formal Models and Sematics (B), pages 995–1072. MIT Press,

Cambridge, MA, USA, 1990.

[29] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In

FOCS, pages 368–377. IEEE, 1991.

[30] B. Finkbeiner and S. Schewe. Coordination logic. In CSL, volume 6247 of LNCS,

pages 305–319. Springer, 2010.

[31] M. J. Fischer and A. Michael. Sacri�cing serializability to a�ain high availability

of data in an unreliable network. In PODS, pages 70–75, New York, NY, USA,

1982. ACM.

[32] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In TACAS, volume

6015 of LNCS, pages 190–204. Springer, 2010.

56

[33] O. Friedmann and M. Lange. Solving parity games in practice. In ATVA, volume

5799 of LNCS, pages 182–196. Springer, 2009.

[34] O. Friedmann and M. Lange. �e pgsolver collection of parity game solvers –

version 3, 2010.

[35] T. Gao, J. Gutierrez, and M. Wooldridge. Iterated Boolean games for rational

veri�cation. In AAMAS, pages 705–713. ACM, 2017.

[36] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV, pages

53–65. Springer, 2001.

[37] D. K. Gi�ord. Weighted voting for replicated data. In SOSP, pages 150–162, New

York, NY, USA, 1979. ACM.

[38] J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge. Nash equilibrium

and bisimulation invariance. In CONCUR, volume 85 of LIPIcs, pages 17:1–17:16.

Schloss Dagstuhl, 2017.

[39] J. Gutierrez, P. Harrenstein, G. Perelli, and M. J. Wooldridge. Nash equilibrium

and bisimulation invariance. Logical Methods in Computer Science, 15(3), 2019.

[40] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Expresiveness and complexity

results for strategic reasoning. In CONCUR, volume 42 of LIPIcs, pages 268–282.

Schloss Dagstuhl, 2015.

[41] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean games. Infor-

mation and Computation, 242:53–79, 2015.

[42] J. Gutierrez, P. Harrenstein, and M. Wooldridge. From model checking to equilib-

rium checking: Reactive modules for rational veri�cation. Arti�cial Intelligence,

248:123–157, 2017.

[43] J. Gutierrez, P. Harrenstein, and M. Wooldridge. Reasoning about equilibria in

game-like concurrent systems. Annals of Pure Applied Logic, 168(2):373–403,

2017.

57

[44] J. Gutierrez, A. Murano, G. Perelli, S. Rubin, and M. J. Wooldridge. Nash equilib-

ria in concurrent games with lexicographic preferences. In IJCAI, pages 1067–

1073. ijcai.org, 2017.

[45] J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. Eve: A tool for temporal

equilibrium analysis. In ATVA, Vol 11138 of LNCS, pages 551–557, Cham, 2018.

Springer.

[46] J. Gutierrez, M. Najib, G. Perelli, and M. J. Wooldridge. On computational

tractability for rational veri�cation. In IJCAI, pages 329–335. ijcai.org, 2019.

[47] J. Gutierrez, G. Perelli, and M. Wooldridge. Imperfect information in reactive

modules games. Information and Computation, 261(Part):650–675, 2018.

[48] J. Y. Halpern. Beyond nash equilibrium: Solution concepts for the 21st century.

In KR, pages 6–15. AAAI Press, 2008.

[49] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the ACM, 32(1):137–161, 1985.

[50] A. Herzig, E. Lorini, F. Ma�re, and F. Schwarzentruber. Epistemic Boolean games

based on a logic of visibility and control. In IJCAI, pages 1116–1122. IJCAI/AAAI

Press, 2016.

[51] M. Jurdzinski. Deciding the winner in parity games is in UP∩ co-up. Information

Processing Le�ers, 68(3):119–124, 1998.

[52] O. Kupferman. Automata theory and model checking. In Handbook of Model

Checking, pages 107–151. Springer International Publishing, 2018.

[53] O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with rational environments.

Annals of Mathematics and Arti�cial Intelligence, 78(1):3–20, 2016.

[54] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos. Equilibria-based prob-

abilistic model checking for concurrent stochastic games. In FM, volume 11800

of LNCS, pages 298–315. Springer, 2019.

58

[55] M. Kwiatkowska, D. Parker, and C. Wiltsche. Prism-games 2.0: A tool for multi-

objective strategy synthesis for stochastic games. In TACAS, volume 9636 of

LNCS, pages 560–566. Springer, 2016.

[56] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: probabilistic model

checking for performance and reliability analysis. SIGMETRICS Performance

Evaluation Review, 36(4):40–45, 2009.

[57] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using

lazy replication. ACM Transactions on Computer Systems, 10(4):360–391, Nov.

1992.

[58] F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Infor-

mation and Computation, 245:98–123, 2015.

[59] C. Löding. Basics on tree automata. In Modern Applications of Automata �eory,

pages 79–110. Indian Institute of Science, Bangalore, India, 2012.

[60] A. Lomuscio, H. �, and F. Raimondi. MCMAS: an open-source model checker

for the veri�cation of multi-agent systems. STTT, 19(1):9–30, 2017.

[61] LTL 2 BA: fast translation from LTL formulae to Büchi automata. http://

www.lsv.fr/∼gastin/ltl2ba/. Accessed: 09-09-2019.

[62] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,

1980.

[63] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[64] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about strategies:

On the model-checking problem. ACM Transactions on Computational Logic,

15(4):34:1–34:47, 2014.

[65] M. J. Osborne and A. Rubinstein. A Course in Game �eory. MIT Press, 1994.

[66] D. Perrin and J. Pin. In�nite Words. Pure and Applied Mathematics. Elsevier,

2004.

59

http://www.lsv.fr/~gastin/ltl2ba/
http://www.lsv.fr/~gastin/ltl2ba/

[67] N. Piterman. From nondeterministic Büchi and Stree� automata to deterministic

parity automata. Logical Methods in Computer Science, 3(3):1–21, 2007.

[68] A. Pnueli. �e temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.

[69] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-

�eoretic, and Logical Foundations. CUP, 2008.

[70] A. P. Sistla, M. Y. Vardi, and P. Wolper. �e complementation problem for Büchi

automata with appplications to temporal logic. �eoretical Computer Science,

49:217–237, 1987.

[71] A. Toumi, J. Gutierrez, and M. Wooldridge. A tool for the automated veri�cation

of Nash equilibria in concurrent games. In ICTAC, volume 9399 of LNCS, pages

583–594. Springer, 2015.

[72] M. Ummels and D. Wojtczak. �e complexity of Nash equilibria in stochastic

multiplayer games. Logical Methods in Computer Science, 7(3):1–45, 2011.

[73] J. van Benthem. Extensive games as process models. Journal of Logic, Language

and Information, 11(3):289–313, 2002.

[74] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of prac-

tical ATL model checking. In AAMAS, pages 201–208. ACM, 2006.

[75] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisim-

ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

[76] M. Wooldridge. Introduction to Multiagent Systems. Wiley, Chichester, UK, 2001.

[77] M. Wooldridge, J. Gutierrez, P. Harrenstein, E. Marchioni, G. Perelli, and

A. Toumi. Rational veri�cation: From model checking to equilibrium checking.

In AAAI, pages 4184–4191, 2016.

[78] G. T. Wuu and A. J. Bernstein. E�cient solutions to the replicated log and dic-

tionary problems. In PODC, pages 233–242, New York, NY, USA, 1984. ACM.

60

[79] W. Zielonka. In�nite games on �nitely coloured graphs with applications to

automata on in�nite trees. �eoretical Computer Science, 200(1-2):135–183, 1998.

61

	1 Introduction
	2 Preliminaries
	3 A Decision Procedure using Parity Games
	4 From LTL to Parity
	5 Characterising Nash Equilibria
	6 Computing Nash Equilibria
	7 Synthesis and Verification
	8 Implementation
	8.1 Tool Description
	8.2 Case Studies
	8.3 Experiment I
	8.4 Experiment II
	8.5 Experiment III

	9 Concluding Remarks and Related Work

